首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1904篇
  免费   70篇
  国内免费   57篇
测绘学   68篇
大气科学   67篇
地球物理   372篇
地质学   1258篇
海洋学   80篇
天文学   113篇
综合类   15篇
自然地理   58篇
  2023年   6篇
  2022年   49篇
  2021年   59篇
  2020年   70篇
  2019年   44篇
  2018年   163篇
  2017年   163篇
  2016年   148篇
  2015年   80篇
  2014年   140篇
  2013年   206篇
  2012年   82篇
  2011年   120篇
  2010年   83篇
  2009年   83篇
  2008年   63篇
  2007年   34篇
  2006年   47篇
  2005年   40篇
  2004年   32篇
  2003年   30篇
  2002年   42篇
  2001年   14篇
  2000年   18篇
  1999年   14篇
  1998年   10篇
  1997年   13篇
  1996年   6篇
  1995年   12篇
  1994年   11篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   12篇
  1985年   11篇
  1984年   10篇
  1983年   5篇
  1982年   11篇
  1981年   7篇
  1979年   9篇
  1978年   7篇
  1976年   4篇
  1975年   3篇
  1973年   4篇
  1970年   3篇
  1969年   2篇
排序方式: 共有2031条查询结果,搜索用时 15 毫秒
51.
Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta‐analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables – obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper – and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR‐derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP‐derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically significant relationships between snow indicators and structural metrics by increasing mean r2 by 20% when compared to manual surveys. The relationships between vegetation and spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size helped to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing technologies, and better represent spatial and temporal variations of snow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
52.
53.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   
54.
The objective of this study was to quantify the impacts of land use/land cover (LULC) change on the hydrology of the Jedeb, an agricultural dominated mesoscale catchment, in the Abay/Upper Blue Nile basin, Ethiopia. Two methods have been used. First, the trends of certain daily flow variability parameters were evaluated to detect statistical significance of the change of the hydrologic response. Second, a conceptual monthly hydrological model was used to detect changes in the model parameters over different periods to infer LULC change. The results from the statistical analysis of the daily flows between 1973 and 2010 reveal a significant change in the response of the catchment. Peak flow is enhanced, i.e. response appears to be flashier. There is a significant increase in the rise and fall rates of the flow hydrograph, as well as the number of low‐flow pulses below a threshold level. The discharge pulses show a declining duration with time. The model result depicts a change in model parameters over different periods, which could be attributed to an LULC change. The model parameters representing soil moisture conditions indicated a gradual decreasing trend, implying limited storage capacity likely attributed to increasing agricultural farming practices in the catchment. This resulted in more surface runoff and less infiltration into the soil layers. The results of the monthly flow duration curve analysis indicated large changes of the flow regime. The high flow has increased by 45% between the 1990s and 2000s, whereas the reduction in low flows was larger: a 15% decrease between 1970s and 1980s, 39% between 1980s and 1990s and up to 71% between 1990s and 2000s. These results, could guide informed catchment management practices to reduce surface runoff and augment soil moisture level in the Jedeb catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
55.
56.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   
57.
58.
Historically, paired watershed studies have been used to quantify the hydrological effects of land use and management practices by concurrently monitoring 2 similar watersheds during calibration (pretreatment) and post‐treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control–treatment watershed pair when the regression coefficients for daily water table elevation were most stable to minimize regression model uncertainty. The control and treatment watersheds were 1 watershed of 3–4‐year‐old intensely managed loblolly pine (Pinus taeda L.) with natural understory, 1 watershed of 3–4‐year‐old loblolly pine intercropped with switchgrass (Panicum virgatum), 1 watershed of 14–15‐year‐old thinned loblolly pine with natural understory (control), and 1 watershed of switchgrass only. The study period spanned from 2009 to 2012. Silvicultural operational practices during this period acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. MOSUM results indicated significant changes in regression parameters due to silvicultural operations and were used to identify stable relationships for water table elevation. None of the calibration relationships developed using this method were significantly different from the classical calibration relationship based on published historical data. We attribute that to the similarity of historical and 2010–2012 leaf area index on control and treatment watersheds as moderated by the emergent vegetation. Although the MOSUM approach does not eliminate the need for true calibration data or replace the classic paired watershed approach, our results show that it may be an effective alternative approach when true data are unavailable, as it minimizes the impacts of external disturbances other than the treatment of interest.  相似文献   
59.
Within a wide range of best management practices for stormwater management in urban areas, there has been an increasing interest in source control measures. Source controls such as low-impact development (LID) techniques are potentially attractive as retrofit options for older developed areas that lack available land to implement conventional measures such as stormwater management ponds. Hence, distributed urban drainage models requiring detailed representation of developed drainage areas should be developed to accurately estimate the benefits that LIDs may provide. This study (1) presents a two-stage classification process on a high-resolution WorldView-2 image, and (2) demonstrates how to use the extracted land cover information in the subsequent hydrologic modelling and assessment of different LIDs’ performance. The proposed two-stage classification method achieved an overall accuracy of 80.6%, whereas a traditional pixel-based achieved 68.4% in classifying the same urban area into six land cover classes. From the classification results, the hydrologic properties of micro-subcatchments were imported in the United States Environmental Protection Agency Storm Water Management Model to assess the performance of LIDs. A reduction of run-off volume 18.2% and 37.1% was found with the implementation of porous pavement and bioretention, respectively, in a typical low-rise residential area located in the city of San Clemente, California, US. The study demonstrates the use of high-resolution remote sensing image to aid in evaluating LID retrofit options, and thus benefits in situations where detailed drainage area information is not available.  相似文献   
60.
This study aims to map regions of near surface fluvial channels, mega-basins and topographic wetness in Saudi Arabia using remote sensing data and an information value (IV) model, which is a modified approach of weight of evidence. We used the new version of the Shuttle Radar Topographic Mission (SRTM) to delineate the fluvial channels, mega-basin, and slope. These hydrological parameters were used to index the topographic wetness of each mega-basin in the region based on IV in a Geographic Information System. We validated our method using the Space Imaging Radar-C and Landsat 8 images and compared the textural features (fluvial channels) evident from SRTM digital elevation model and to determine whether these patterns were different. Our results revealed that the region is drained by nine tributaries and that the Err Rub Al Khali and Sahba mega-basins have the highest value of the IV and topographic wetness values; the Arran and coastal mega-basins have the lowest value of the IV and topographic wetness values. An integrated approach is timely and economically effective and can be applied throughout the arid and semi-arid regions to help hydrologists and urban developers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号