全文获取类型
收费全文 | 1030篇 |
免费 | 33篇 |
国内免费 | 43篇 |
专业分类
测绘学 | 32篇 |
大气科学 | 19篇 |
地球物理 | 205篇 |
地质学 | 715篇 |
海洋学 | 50篇 |
天文学 | 52篇 |
综合类 | 9篇 |
自然地理 | 24篇 |
出版年
2023年 | 4篇 |
2022年 | 17篇 |
2021年 | 28篇 |
2020年 | 39篇 |
2019年 | 22篇 |
2018年 | 100篇 |
2017年 | 86篇 |
2016年 | 88篇 |
2015年 | 42篇 |
2014年 | 80篇 |
2013年 | 137篇 |
2012年 | 44篇 |
2011年 | 70篇 |
2010年 | 46篇 |
2009年 | 48篇 |
2008年 | 29篇 |
2007年 | 15篇 |
2006年 | 26篇 |
2005年 | 18篇 |
2004年 | 13篇 |
2003年 | 13篇 |
2002年 | 28篇 |
2001年 | 6篇 |
2000年 | 7篇 |
1999年 | 3篇 |
1998年 | 8篇 |
1997年 | 10篇 |
1995年 | 7篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 5篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1987年 | 5篇 |
1986年 | 5篇 |
1985年 | 4篇 |
1984年 | 5篇 |
1983年 | 2篇 |
1982年 | 4篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1979年 | 8篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有1106条查询结果,搜索用时 15 毫秒
41.
Mohamed Adel Sharaf Mervat El-Sayed Awad Mona A. Banaja 《Astrophysics and Space Science》1987,133(2):339-353
In this paper, economical and stable recurrence formulae for the Earth's zonal potential and its gradient for the KS regularized theory will be established for any numberN of the zonal harmonic coefficient. A general recursive computational algorithm based on these formulae is also established for the initial value problem of the KS theory for the prediction of artificial satellites in the Earth's gravitational field with axial symmetry. Applications of the algorithm for the problem of the final state prediction are illustrated by numerical examples of three test orbits each for two geopotential models corresponding toN=2 andN=36. A final state of any desired accuracy is obtained for each case study, a result which shows the flexibility of the algorithm. 相似文献
42.
Trophic interactions in commercially exploited demersal finfishes in the southeastern Arabian Sea of India were studied to understand trophic organization with emphasis on ontogenic diet shifts within the marine food web. In total, the contents of 4716 stomachs were examined from which 78 prey items were identified. Crustaceans and fishes were the major prey groups to most of the fishes. Based on cluster analysis of predator feeding similarities and ontogenic diet shift within each predator, four major trophic guilds and many sub-guilds were identified. The first guild ‘detritus feeders’ included all size groups of Cynoglossus macrostomus, Pampus argenteus, Leiognathus bindus and Priacanthus hamrur. Guild two, named ‘Shrimp feeders’, was the largest guild identified and included all size groups of Rhynchobatus djiddensis and Nemipterus mesoprion, medium and large Nemipterus japonicus, P. hamrur and Grammoplites suppositus, small and medium Otolithes cuvieri and small Lactarius lactarius. Guild three, named ‘crab and squilla feeders’, consisted of few predators. The fourth trophic guild, ‘piscivores’, was mainly made up of larger size groups of all predators and all size groups of Pseudorhombus arsius and Carcharhinus limbatus. The mean diet breadth and mean trophic level showed strong correlation with ontogenic diet shift. The mean trophic level varied from 2.2 ± 0.1 in large L. bindus to 4.6 ± 0.2 in large Epinephelus diacanthus and the diet breadth from 1.4 ± 0.3 in medium P. argenteus to 8.3 ± 0.2 in medium N. japonicus. Overall, the present study showed that predators in the ecosystem have a strong feeding preference for the sergestid shrimp Acetes indicus, penaeid shrimps, epibenthic crabs and detritus. 相似文献
43.
A novel technique in analyzing non-linear wave-wave interaction 总被引:1,自引:0,他引:1
During wave growth non-linear wave–wave interactions cause transfer of some wave energy from lower to higher wave periods as the spectrum grows. Wavelet bicoherence, which is a new technique in the analysis of wind–wave and wave–wave interactions, is used to analyze non-linear wave–wave interactions. A selected record of wind wave that contains the maximum wave height observed during 6 h of wave generation is divided into five segments and wavelet bicoherence is computed for the whole record, and for all divided segments. The study shows that the non-linear wave–wave interaction occurs at different bicoherence levels and these levels are different from one segment to another due to the non-stationarity feature of the examined data set. 相似文献
44.
Reconstructing historic Glacial Lake Outburst Floods through numerical modelling and geomorphological assessment: Extreme events in the Himalaya 下载免费PDF全文
Matthew J. Westoby Neil F. Glasser Michael J. Hambrey James Brasington John M. Reynolds Mohamed A. A. M. Hassan 《地球表面变化过程与地形》2014,39(12):1675-1692
Recession of high‐mountain glaciers in response to climatic change frequently results in the development of moraine‐dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 km2) receding valley glacier in Mt. Everest (Sagarmatha) National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice‐contact moraine‐dammed lake to develop. The lake had a maximum volume of 5.5 × 105 m3 and drained as a result of breaching of the terminal moraine. An estimated 1.3 × 105 m3 of material was removed from the terminal moraine during breach development. Numerical dam‐breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was used to investigate a range of moraine‐dam failure scenarios. Reconstructed outflow peak discharges, including failure via overtopping and piping mechanisms, are in the range 146–2200 m3 s‐1. Results from two‐dimensional hydrodynamic GLOF modelling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 m s‐1 within 700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming a 300 m long and 100 m wide debris fan originating at the breach exit. moraine‐dam. These results also suggest that inundation of the entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous moraine‐dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. 相似文献
45.
Mohamed Ragab Shalaby Mohammed Hail Hakimi Wan Hasiah Abdullah 《International Journal of Earth Sciences》2013,102(1):319-332
The Shoushan Basin is an important hydrocarbon province in the northern Western Desert, Egypt, but the burial/thermal histories for most of the source rocks in the basin have not been assigned yet. In this study, subsurface samples from selected wells were collected to characterize the source rocks of Alam El-Bueib Formation and to study thermal history in the Shoushan Basin. The Lower Cretaceous Alam El-Bueib Formation is widespread in the Shoushan Basin, which is composed mainly of shales and sandstones with minor carbonate rocks deposited in a marine environment. The gas generative potential of the Lower Cretaceous Alam El-Bueib Formation in the Shoushan Basin was evaluated by Rock–Eval pyrolysis. Most samples contain sufficient type III organic matter to be considered gas prone. Vitrinite reflectance was measured at eight stratigraphic levels (Jurassic–Cretaceous). Vitrinite reflectance profiles show a general increase of vitrinite reflectance with depth. Vitrinite reflectance values of Alam El-Bueib Formation range between 0.70 and 0.87 VRr %, indicating a thermal maturity level sufficient for hydrocarbon generation. Thermal maturity and burial histories models predict that the Alam El-Bueib source rock entered the mid-mature stage for hydrocarbon generation in the Tertiary. These models indicate that the onset of gas generation from the Alam El-Bueib source rock began in the Paleocene (60 Ma), and the maximum volume of gas generation occurred during the Pliocene (3–2 Ma). 相似文献
46.
The Wadi Fatira area occurs at the southern margin of the Northern Eastern Desert (NED) of Egypt and is occupied by highly sheared metavolcanics tectonically alternated with banded iron formations and intruded by Barud tonalite–granodiorite, post-tectonic gabbroic and granitic intrusions. Detailed structural investigation showed that the schists and migmatitic amphibolites are formed by shearing in metavolcanics and syntectonic Barud tonalite–granodiorite due to movement along the Wadi Fatira shear zone (WFSZ). This shear zone starts as a NW–SE striking fault along Wadi Barud Al Azraq and the Eastern part of Wadi Fatira and turns to a E–W trending fault to the north of Wadi Fatira. Microstructural shear sense indicators such as asymmetric geometry of porphyroclasts such as σ-type and asymmetric folds deforming fine-grained bands which are frequently found around porphyroclasts indicate sinistral sense of shearing along the WFSZ. This shear zone is characterized by transitions from local convergence to local extension along their E–W and NW–SE trending parts, respectively. The NW–SE part of the WFSZ is of about 200 m in width and characterized by synmagmatic extensional features such as intrusion of synkinematic tonalite, creation of NE–SE trending normal faults, and formation of migmatitic amphibolites and schlieric tonalites. This part of the shear zone is metamorphosed under synthermal peak metamorphic conditions (725°C at 2–4 kbar). The E–W compressional part of the WFSZ is up to 3 km in width and composed of hornblende, chlorite, actinolite, and biotite schists together with sheared intermediate and acidic metatuffs. Contractional and transpressional structures in this part of the WFSZ include E–W trending major asymmetrical anticline and syncline, nearly vertical foliation and steeply pitching stretching lineations, NNE dipping minor thrusts, and minor intrafolial folds with their hinges parallel to the stretching lineation. P–T estimates using mineral analyses of plagioclase and hornblende from schists and foliated metavolcanics indicate prograde metamorphism under medium-grade amphibolite facies (500–600°C at 3–7 kbar) retrogressed to low-grade greenschist facies (227–317°C). The foliation in Barud tonalite–granodiorite close to the E–W part of the WFSZ runs parallel to the plane of shearing and the tonalite show numerous magmatic flow structures overprinted by folding and ductile shearing. The WFSZ is similar to structures resulted from combined simple shear and orthogonal shortening of oblique transpressive shear zones and their sense of movement is comparable with the characteristics of the Najd Fault System. 相似文献
47.
从 18 5 2年Carter首次沿阿拉伯海岸进行系统地质观察至今 ,也门有近 15 0年的地质研究历史。如果想容易地阅读和理解也门共和国地质研究史 ,必须对勘探工作、科学预测工作的历程进行重新研究 ,所有这些研究工作都与也门共和国地质研究史四个阶段的划分相一致。对于每一个回顾也门地质研究历史的人来说 ,都必须提及也门共和国地质研究史的四个阶段。第一阶段 (185 2~ 190 1) 185 2年 ,Carter首次沿阿拉伯海岸从Muscat到Oman进行了系统地质观察 ,此后 ,其他作者也进行了地质研究。如Burr于 186 4年编写了Ade… 相似文献
48.
Stefano Urbini Iacopo Nicolosi Antonio Zeoli Sami El Khrepy Ahmed Lethy Mahfooz Hafez Mohamed El Gabry Ahmed El Barkooky Aly Barakat Mahomoud GOMAA Ali M. Radwan Mohamed El Sharkawi Massimo D’orazio Luigi Folco 《Meteoritics & planetary science》2012,47(11):1842-1868
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t. 相似文献
49.
50.
We report on the coronal hole (CH) influence on the 54 magnetic cloud (MC) and non-MC associated coronal mass ejections (CMEs) selected for studies during the Coordinated Data Analysis Workshops (CDAWs) focusing on the question if all CMEs are flux ropes. All selected CMEs originated from source regions located between longitudes 15E?–?15W. Xie, Gopalswamy, and St. Cyr (2013, Solar Phys., doi: 10.1007/s11207-012-0209-0 ) found that these MC and non-MC associated CMEs are on average deflected towards and away from the Sun–Earth line, respectively. We used a CH influence parameter (CHIP) that depends on the CH area, average magnetic field strength, and distance from the CME source region to describe the influence of all on-disk CHs on the erupting CME. We found that for CHIP values larger than 2.6 G the MC and non-MC events separate into two distinct groups where MCs (non-MCs) are deflected towards (away) from the disk center. Division into two groups was also observed when the distance to the nearest CH was less than 3.2×105 km. At CHIP values less than 2.6 G or at distances of the nearest CH larger than 3.2×105 km the deflection distributions of the MC and non-MCs started to overlap, indicating diminishing CH influence. These results give support to the idea that all CMEs are flux ropes, but those observed to be non-MCs at 1 AU could be deflected away from the Sun–Earth line by nearby CHs, making their flux rope structure unobservable at 1 AU. 相似文献