首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  国内免费   3篇
测绘学   4篇
大气科学   8篇
地球物理   46篇
地质学   68篇
海洋学   10篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   11篇
  2016年   17篇
  2015年   9篇
  2014年   10篇
  2013年   21篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   10篇
  2008年   9篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  1998年   1篇
  1994年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
71.
This is a tentative study in order to characterize and identify the Serghaya fault in Syria through an analysis of its instrumentally observed earthquake activity for the period of 1995–2009. Different approaches are used to evaluate a- and b-values of the Gutenberg-Richter relation. It has been found that the computed b-values (around 1.5) are bigger than usually expected, which could be related either to incompleteness of earthquake catalogue or to invalidity of the Gutenberg-Richter model in the case of Serghaya fault. Based on several explanations of high b-values, existing in the literature, it can be inferred that the events recorded on the Serghaya fault occurred at small depths in the heterogeneous milieus under low stresses. A relative seismic quiescence from 1900 up to now is observed, whereas the biggest earthquake recorded during the study period does not exceed magnitude 3.9. Such quiescence does not reflect accurately an earthquake potential of the Serghaya fault and can probably indicate a large-magnitude earthquake occurrence in near future. The established earthquake catalogue must be necessarily completed in order to deeper characterize the real behavior of the Serghaya fault. Such a characterization, accompanied with seismic activity evaluation, could be used in the assessment of seismic hazard.  相似文献   
72.
ABSTRACT

The modelling of soil loss and investigation of urban hydrology and wet weather pollution in Malaysia requires the definition of rainfall parameters for the region. In this study, an inexpensive method was applied to establish the influence of raindrop diameter on kinetics and rain intensity in Skudai, Peninsular Malaysia, as a prelude to wider regional research. Raindrop sizes vary from less than 1.2 mm to as big as 7.0 mm, with median raindrop diameters of 2.51 mm and a mean diameter of 2.56 mm. The median raindrop diameter–intensity relationship correlates strongly using power and exponential equations, with coefficients of determination of 0.75 and 0.73, respectively. The kinetic energy–intensity relationship fits an exponential function and also a linear equation with R2 values of 0.49 and 0.34, respectively. An average rain kinetic energy of 30 J m-2 mm-1 was recorded. This research leads to an objective reclassification of rainfall intensities in the region.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   
73.
Abstract

A comparison study is presented of three methods for evaluating trends in drought frequency: the standardized precipitation index (SPI), the Palmer drought severity index (PDSI), and a new method for estimation of dry spells (DS), which is based on average daily temperature and precipitation, and takes into account the length of a spell. The methods were applied to climate data from 450 stations in the Elbe River basin for the period 1951–2003, as well as data from several stations with longer observed time series. Statistical methods were used to calculate trend lines and evaluate the significance of detected trends. The dry spells estimated with the new method show significant trends in the whole lowland part of the Elbe basin during the last 53 years, and at the 10% level almost everywhere in the German part of the basin excluding mountains and the area around the river mouth. The SPI and PDSI methods also revealed significant trends, but for smaller areas in the lowland. The new DS method provides a useful supplement to other drought indices for the detection of trends in drought frequency. Furthermore, the DS method was able to detect statistically significant trends in areas where the other two methods failed to find significant trends, e.g. in the loess region in the southwest of the German part of the basin, where small insignificant changes in climate can lead to significant changes in water fluxes. This is important, because the loess region is the area within the basin having the highest crop yields. Therefore, additional research has to be done to investigate possible impacts of detected trends on water resources availability, and possible future trends in drought frequency under climate change.  相似文献   
74.
In this study, a novel machine learning technique called the support vector machine (SVM) method is proposed as a new predictive model to predict sediment loads in three Malaysian rivers. The SVM is employed without any restriction to an extensive database compiled from measurements in the Muda, Langat, and Kurau rivers. The SVM technique demonstrated a superior performance compared to other traditional sediment‐load methods. The coefficient of determination, 0.958, and the mean square error, 0.0698, of the SVM method are higher than those of the traditional method. The performance of the SVM method demonstrates its predictive capability and the possibility of the generalization of the model to nonlinear problems for river engineering applications.  相似文献   
75.
A one‐dimensional uncoupled model governed by this research is a physics‐based modelling of the rainfall‐runoff induced erosion process. The presented model is composed of three parts of a three‐dimensional (3D) hillslope geometry, a nonlinear storage (kinematic wave) model for hillslope hydrological response, and an unsteady physically based surface erosion model. The 3D hillslope geometry model allows describing of the hillslope morphology by defining their plan shape and profile curvature. By changing these two topographic parameters, nine basic hillslope types are derived. The modelling of hillslope hydrological response is based on a flow continuity equation as the relation of discharge and flow depth is passed on kinematic wave approximation. The erosion model is based on a mass conservation equation for unsteady flow. The model assumes that suspended sediment does not affect flow dynamics. The model also accounts for the effect of flow depth plus loose soil depth on soil detachment. The presented model was run for two different precipitations, slope content, and length, and results were plotted for sediment detachment/deposition rate. Based on the obtained results, in hillslopes with convex and straight profile curvatures, sediment detachment only occurred in the whole length of the hillslope. However, in concave ones, sediment detachment and deposition only occurred together in hillslope. The hillslopes with straight profiles and convergent plans have the highest rate of detachment. Also, results show that most detachment rates occur in convex profile curvatures, which are about 15 times more than in straight profiles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
76.
Hydrogen (H2) is one of renewable energy sources known for its non‐polluting and environmentally friendly nature, as its end combustion product is water (H2O). The biological production of H2 is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field.  相似文献   
77.
Grain dust is a by-product produced in large quantities from grain storage and milling facilities but as of yet is treated as waste locally and regionally. Based on the conviction that material properties determination is a necessary first step for the efficient handling, processing, and use of materials, this work was initiated with the purpose of characterizing grain dust in terms of its physicochemical and thermal properties. Grain dust as a special waste material is a complex, dry, grey powder, composed mainly of grain chips, soil, whole wheat and barley seeds, and straw. The material was found to have a bulk density of 362 kg/m3, specific heat, thermal conductivity, and gross calorific value were 1540 J/kg K, 0.27 W/m K, and 4120 kJ/kg, respectively. Nutritional composition showed low concentrations of protein, and ether extract, and high concentrations of carbohydrates, ash, and crude fiber. Mineral analysis showed that Ca, Fe, and K were available in significant amounts ranging from 30 to 135 ppm. The as-received material is dry enough to be stored very safely and burned for energy production in either its loose form or as pellets. Moreover, adjustments to the ash content and C:N ratio of the material deems it a promising candidate as an animal feed and as a substrate for composting and biogasification.  相似文献   
78.
The hydraulic conductivity, Ks, is one of the most important hydraulic properties which controls the water and solute movement into the soil. It is measured on soil specimens in the laboratory. On the other hand, sometimes it is obtained by tests carried out in the field by a number of researchers. Therefore, several experimental formulas have developed to predict it. Recently, soft computing tools have been used to evaluate the hydraulic conductivity. However, these tools are not as transparent as empirical formulas. In this study, another soft computing approach, i.e. model trees, have been used for predicting the hydraulic conductivity. The main advantage of model trees is that, unlike the other data learning tools, they are easier to use and represent understandable mathematical rules more clearly. In this paper, a new formula that includes some parameters is derived to estimate the hydraulic conductivity. To develop the new formulas, experimental data sets of hydraulic conductivity were used. A comparison is made between the estimated hydraulic conductivity by this new formula and formulas given by other’s researches.  相似文献   
79.
Tomographic Imaging of Lg and Sn Propagation in the Middle East   总被引:1,自引:0,他引:1  
?—?Observations based on relatively limited data recorded by sparsely distributed stations have indicated that regional seismic phase propagation (Lg and Sn) is very complex in the Middle East. Accurate characterization of regional seismic wave propagation in this region necessitates the use of a large number of seismic stations. We have compiled a large data set of regional and local seismograms recorded in the Middle East. This data set comprises approximately four years of data from national short-period networks in Turkey and Syria, data from temporary broadband arrays in Saudi Arabia and the Caspian Sea region, and data from GSN, MEDNET, and GEOFON stations in the Middle East. We have used this data set to decipher the character and pattern of regional seismic wave propagation. We have mapped zones of blockage as well as inefficient and efficient propagation for Lg, Pg, and Sn throughout the Middle East. Two tomographic techniques have been developed in order to objectively determine regions of lithospheric attenuation in the Middle East.¶We observe evidence of major increase in Lg attenuation, relative to Pg, across the Bitlis suture and the Zagros fold and thrust belt, corresponding to the boundary between the Arabian and Eurasian plates. We also observe a zone of inefficient Sn propagation along the Dead Sea fault system which coincides with low Pn velocities along most of the Dead Sea fault system and with previous observations of poor Sn propagation in western Jordan. Our observations indicate that in the northern portion of the Arabian plate (south of the Bitlis suture) there is also a zone of inefficient Sn propagation that would not have been predicted from prior measurements of relatively low Pn velocities. Mapped high attenuation of Sn correlates well with regions of Cenozoic and Holocene basaltic volcanism. These regions of uppermost mantle shear-wave attenuation most probably have anomously hot and possibly thin lithosphere.  相似文献   
80.
Water recharge from land surfaces into subsurface media is an essential element in the hydrologic cycle. For a small-scale assessment, experimental approaches are usually followed, however, on a regional scale, this assessment needs to be made into a comprehensive picture where spatial data of the different contributing factors are treated. The case of Occidental Lebanon, with an area of around 5,000 km2, was studied by the integration of all factors influencing this hydrologic process. Contributing factors are: lineaments and drainage frequency density, lithologic character, karstic domains and land cover/land use. The determination of these factors was carried out mainly by the application of remote sensing. Satellite images (Landsat 7 ETM &; SPOT) and aerial photos were subjected to several treatment processes using a miscellany of software, mainly ERDAS Imagine and ESRI’s Arc View software. Furthermore, exogenetic data, such as topographic and geologic maps, were utilized. The extracted information for these factors was plotted on maps. The integration of the maps in a GIS allowed deciding their interactive effects. However, each factor had its own degree of effect, i.e., weight, which was also determined in this study. This study is an approach to better estimate and provide qualitative assessments of recharge potential (RP). The resultant map shows the highest recharge potentials towards the elevated regions where karstification is well development. It was found that around 57% of the study area is terrain with very high to high recharge rate values, which a considerable amount of precipitated water is allowed to percolate into subsurface rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号