首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  国内免费   3篇
测绘学   4篇
大气科学   8篇
地球物理   46篇
地质学   68篇
海洋学   10篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   11篇
  2016年   17篇
  2015年   9篇
  2014年   10篇
  2013年   21篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   10篇
  2008年   9篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  1998年   1篇
  1994年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
111.
112.
Solute transport in subsurface environments is controlled by geological heterogeneity over multiple scales. In reactive transport characterized by a low Damköhler number, it is also controlled by the rate of kinetic mass transfer. A theory for addressing the impact of sedimentary texture on the transport of kinetically sorbing solutes in heterogeneous porous formations is derived using the Lagrangian-based stochastic methodology. The resulting model represents the hierarchical organization of sedimentary textures and associated modes of log conductivity (K) for sedimentary units through a hierarchical Markov Chain. The model characterizes kinetic sorption using a spatially uniform linear reversible rate expression. Our main interest is to investigate the effect of sorption kinetics relative to the effects of K heterogeneity on the dispersion of a reactive plume. We study the contribution of each scale of stratal architecture to the dispersion of kinetically sorbing solutes in the case of a low Damköhler number. Examples are used to demonstrate the time evolution and relative contributions of the auto- and cross-transition probability terms to dispersion. Our analysis is focused on the model sensitivity to the parameters defined at each hierarchical level (scale) including the integral scales of K spatial correlation, the anisotropy ratio, the indicator correlation scales, and the contrast in mean K between facies defined at different scales. The results show that the anisotropy ratio and integral scales of K have negligible effect upon the longitudinal dispersion of sorbing solutes. Furthermore, dispersion of sorbing solutes depends mostly on indicator correlation scales, and the contrast of the mean conductivity between units at different scales.  相似文献   
113.
114.
Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R~2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R~2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R~2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients.  相似文献   
115.
Bio-based materials are widely used recently in order to introduce a more sustainable construction material. Kenaf is a type of bio-based material that can be easily obtained in a tropical country, which could be a potential material to be utilised as a geotextile material because it has good tensile strength. The geotextile could be used to improve the bearing capacity of a loose soil. This paper presents a series of small-scale physical modelling tests to investigate the bearing capacity performance of Kenaf fibre geotextile laid on and inside the sand layer. A rigid footing was used to replicate a strip footing during the loading test, and sand was prepared based on 50% of relative density in a rigid testing chamber for ground model preparation. In order to treat the soil, Kenaf fibre geotextile was laid at four difference locations which are on the soil surface and underneath the ground model surface at 50, 75 and 100 mm deep. It was found that the usage of the Kenaf fibre geotextile has improved the bearing capacity of the sandy soil up to 414.9% as compared to untreated soil. It was also found that the depth of the Kenaf fibre geotextile treated into the soil also affects the soil performance.  相似文献   
116.
The object of this work is a building situated in the ancient citadel of Damascus: tower 8 which has been affected by devastating earthquakes and subjected to a consolidation process thanks to the Syrian–Italian Cooperation Project. The aim of this research is to investigate the dynamic characteristics of this consolidated structure. Hence, a mixed procedure of experimental measurements and analytical analysis has been chosen. Considering the geotectonic environment and the historical importance, ambient noise measurements are preferred as being a non-destructive technique and the most suitable for the study purpose. The dynamic characteristics of tower 8 are analyzed experimentally and analytically on the basis of ambient noise measurements, which have been performed on the ground and floors of the tower. With spectral analysis of ambient noise records, the predominant frequencies, amplification factors, and damping ratios have been determined. The experimental and analytical results have allowed verifying the efficiency of the consolidation interventions in tower 8.  相似文献   
117.
The adsorption of Ni(II) from aqueous solutions using base treated cogon grass or Imperata cylindrica (NHIC) was performed under batch and column modes. Batch experiments were conducted to determine the factors affecting adsorption such as pH, adsorbent dosage, initial nickel concentration, contact time and temperature. The fixed‐bed column experiment was performed to determine the practical applicability of NHIC and to obtain the breakthrough curve. Adsorption was fast as equilibrium was achieved within 60 min, and was best described by the pseudo second order model. According to the Langmuir model, a maximum adsorption capacity of 6.96 mg/g was observed at pH 5 and at a temperature of 313 K. Thermodynamic parameters such as ΔG0, ΔH0 and ΔS0 were calculated, and indicated that adsorption was a spontaneous and endothermic process. The mechanistic pathway of Ni(II) uptake was examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) spectroscopy. The Thomas and Yoon‐Nelson models were used to analyze the fixed‐bed column data.  相似文献   
118.
In this paper, three H-control design methods are developed and applied to a three-storey building with an active mass damper as a control mechanism. The system of equations of the structural system, including the actuator and sensors, has been developed directly from experimentally derived data which forms the basis of the benchmark study discussed in this paper. The building plus the damper are modelled as a nominally linear system with input as well as state delays. Feedback control synthesis are first performed by using either of the two forms; the first is a pure state feedback and the other is a static output feedback. The analytical results are cast into a Linear Matrix Inequality (LMI) framework which can be solved numerically by efficient interior-point methods. The developed system is subjected to two historical earthquake excitation inputs (ElCentro and Hachinohe) and to the Kanai–Tajimi filter. The response is given in the form of indices in order to compare with other solutions of the benchmark problem. In addition, simulation results pertinent to the developed techniques are presented. © 1998 John Wiley & Sons, Ltd.  相似文献   
119.
An area of about 30 km2 located in Ain Jouhra, south of Rabat, Morocco, was the subject of a geoelectric resistivity investigation. The main goal of the investigation was the assessment of the groundwater potential of the uppermost aquifer. The aquifer conditions such as depth, thickness and boundaries were also investigated. The obtained apparent resistivity curves were first analysed qualitatively and classified using simple curve shapes. Thereafter, the data were converted to resistivity and thickness pairs semi‐quantitatively by means of master curves and then quantitatively by computer modelling using ATO and Winsev software (Zohdy, 1989; Zohdy and Bisdrof, 1989). Lithological control from the available single well with a stratigraphic log aided in the correlation of the resistivity values to different rock units. Three different AB‐spacing iso‐resistivity maps, an isopach map of the main groundwater‐bearing horizon, the depth to the aquifer substratum map and five geoelectric cross‐sections were constructed. The interpretation of these soundings indicates the presence of an unconfined to semi‐confined sandy aquifer with relatively important extent and varying thickness. The maximal thickness of the aquifer is recorded in the central part of the investigated area and is thinning southwards to pinch out farther to the south. Geophysical as well as field data indicate a hydraulic connection between the upper and deeper aquifers. Indeed, the two aquifers are separated from each other by a marly substratum that is indicated throughout the area by the lowest values of the interpreted true resistivity. The value of this resistivity varies laterally, most likely due to the lateral variation in the shale‐to‐sand ratio. The altitude of the substratum decreases towards the north, and increases southwards. Regarding the availability of the groundwater in the study area, zones with high potential are theoretically expected to occur in the central part where the transversal resistance is greatest. However, sufficient water supply and high flow rates from wells intended to produce restrictively from the most upper aquifer are not likely to exist. This conclusion, which seems to be very pessimistic, is evidenced from two real field and experimental observations. The first is the rapid fall of the level of Gharnoug lake, despite the ongoing feeding by three wells. Hence, the amount of water level drop cannot be accounted for by the evaporation alone. That means that the deeper aquifer is continuously draining the upper aquifer at a high flow rate. Very low rates are recorded in all the wells that penetrated only the upper aquifer, the exception being the well that reached deeper into the lower aquifer. The flow rate in this lower aquifer measured 18 litre s?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
120.
Analytical studies for well design adjacent to river banks are the most significant practical task in cases involving the efficiency of riverbank filtration systems. In times when high pollution of river water is joined with increasing water demand, it is necessary to design pumping wells near the river that provide acceptable amounts of river water with minimum contaminant concentrations. This will guarantee the quality and safety of drinking water supplies. This article develops an analytical solution based on the Green's function approach to solve an inverse problem: based on the required level of contaminant concentration and planned pumping time period, the shortest distance to the riverbank that has the maximum percentage of river water is determined. This model is developed in a confined and homogenous aquifer that is partially penetrated by the stream due to the existence of clogging layers. Initially, the analytical results obtained at different pumping times, rates and with different values of initial concentration are checked numerically using the MODFLOW software. Generally, the distance results obtained from the proposed model are acceptable. Then, the model is validated by data related to two pumping wells located at the first riverbank filtration pilot project conducted in Malaysia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号