首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
地球物理   26篇
地质学   19篇
海洋学   10篇
自然地理   11篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
11.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   
12.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   
13.
This paper first describes the atmospheric correction algorithm for OCTS visible band data used at NASDA/EOC. Sharing a basic structure with Gordon and Wang’s Sea WiFS algorithm, it uses 10 candidate aerosol models including the “Asian dust model” introduced in consideration of the unique feature of aerosols over the east Asian waters. Based on the observations at 670 and 865 nm bands, the algorithm selects a pair of aerosol models that account best for the observed spectral reflectances, and synthesizes the aerosol reflectance used for the atmospheric correction. Two different schemes for determining the value of the parameter for the aerosol model selection are presented and their anticipated estimation error is analyzed in terms of retrieved water reflectance at 443 nm. The results of our numerical simulation show that the standard deviation of the estimation error of the “weighted average” scheme is mostly within the permissible level of ±0.002, reducing the error by 18% on average compared to the “simple average” scheme. The paper further discusses the expected error under the old CZCS-type atmospheric correction, which assumes constant aerosol optical properties throughout the given image. Although our algorithm has a better performance than the CZCS algorithm, further analysis shows that the error induced by the assumption taken in the algorithm that the water-leaving radiance at 670 nm band is negligibly small may be large in high pigment concentration waters, indicating the necessity for future improvements.  相似文献   
14.
We conducted melting experiments on a low-alkali tholeiite (SiO2 ~52 wt%, MgO ~6.5 wt%, CaO/Na2O~4.4, Al2O3/SiO2 ~0.33) under both H2O-undersaturated and H2O-saturated conditions to investigate the effect of H2O on the Ca–Na partitioning between plagioclase and melt. Experiments were performed in the temperature and pressure ranges of 1,000–1,300°C and 1–5 kbar, respectively, with varying H2O contents of 0–12wt%. Redox condition was 0–2 log unit above NNO (nickel–nickel oxide) buffer. Temperature-bulk H2O diagrams for the low-alkali tholeiite are constructed at 1, 2, and 5 kbar, and compositions of near-liquidus plagioclase and coexisting melt are determined. To exclude the effect of melt composition (CaO/Na2O and Al2O3/SiO2 ratios) on plagioclase composition and to reveal the effect of H2O on An (=100×Ca/(Ca+Na)) content and (=(Ca/Na)pl/(Ca/Na)melt), we focused on the composition of near-liquidus plagioclases which crystallized from melts with nearly constant CaO/Na2O and Al2O3/SiO2 ratios. Our experimental results show that, at each experimental pressure, An content of the near-liquidus plagioclase and the KDCa-Na almost linearly increases as H2O content in melt increases. Each of the An content and the variations in a low-alkali tholeiitic system (CaO/Na2O~4.0–4.5, Al2O3/SiO2 ~0.27–0.33) can be described by one equation using temperature, pressure, and melt H2O content as parameters. An content and of liquidus plagioclase increases with increasing melt H2O and with decreasing pressure, elucidating that nearly H2O-saturated conditions of 2–3 kbar is optimal for the crystallization of the most An-rich plagioclase (>An88). We suggest this pressure condition of 2–3 kbar, corresponding to depth of 7–11 km, plays an important role for the origin of An-rich plagioclase in H2O-rich low-alkali tholeiite. At pressures more than ca. 4 kbar, crystallization of liquidus Ca-rich clinopyroxene decreases the CaO/Na2O ratio of liquid, thus prohibiting the crystallization of high-An plagioclase from hydrous tholeiite.  相似文献   
15.
We derived explicit expressions in the time domain for 3-D quasi-static strain and stress fields, due to a point moment tensor source in an elastic surface layer overlying viscoelastic half-space under gravity. The expressions of strain in the elastic surface layer were directly obtained from the expressions of displacement in our previous paper. The conversion of strain into stress is easy, because the stress–strain relation of elastic material is linear. In the viscoelastic substratum, the expressions of strain were obtained by applying the correspondence principle of linear viscoelasticity to the associated elastic solution. The strain–stress conversion is not straightforward, as the stress–strain relation of viscoelastic material is usually given in a differential form. To convert strain into stress, we used an integral form of the stress–strain relation instead of the usual differential form. The expressions give the responses of elastic half-space at \( t = 0 \) , and the responses of an elastic plate floating on non-viscous liquid at \( t = \infty \) . The moment tensor is rationally decomposed into the three independent force systems, corresponding to isotropic expansion, shear faulting and crack opening, and so the expressions include the strain and stress fields for these force systems as special cases. As the first numerical example, we computed the temporal changes in strain and stress fields after the sudden opening of an infinitely long vertical crack cutting the elastic surface layer. Here, we observe that the stress changes caused by the sudden crack opening gradually decay with time and vanish at \( t = \infty \) everywhere. After the completion of stress relaxation, a characteristic pattern of shear strain remains in the viscoelastic substratum. Since the strain and stress fields at \( t = \infty \) can be read as the strain- and stress-rate fields caused by steady crack opening, respectively, this numerical example demonstrates the realization of a steady stress state supported by steady viscous flow in the asthenosphere, associated with steady seafloor spreading at mid-ocean ridges. For the second numerical example, we computed the temporal changes in strain and stress fields after the 2011 Tohoku-oki mega-thrust earthquake, which occurred at the North American-Pacific plate interface. In this numerical example, the stress changes caused by coseismic fault slip vanish at \( t = \infty \) in the viscoelastic substratum, but remain in the elastic surface layer. The coseismic stress changes (and also strain changes) in the elastic surface layer diffuse away from the source region with time, due to gradual stress relaxation in the viscoelastic substratum.  相似文献   
16.
Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters.  相似文献   
17.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   
18.
19.
The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号