首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
地球物理   26篇
地质学   19篇
海洋学   10篇
自然地理   11篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
41.
Major and trace element, and Sr-Nd isotope compositions were determined for Quaternary volcanic rocks from NE Sulawesi (the Sangihe are), Indonesia, in order to examine the origin of across-arc variation in lava and magma source chemistry. The arc is formed in an intraoceanic tectonic setting and is not associated with a backarc basin, thereby minimizing possible contributions from non-arc geochemical reservoirs. The geochemistry of these arc lavas is likely to provide essential information about the chemical characteristics of subduction components. All incompatible elements, except Pb, increase away from the volcancic front. Major element data for Mg-rich lavas together with available experimental data, suggest that primary magmas are produced at higher pressured by smaller degrees of partial melting beneath the backarc-side volcanoes. Rb/K and Ba/Pb are higher, and 87Sr/86Sr and 143Nd/144Nd are lower in backarc-side lavas. These variations may be attributed to generation of hydrous fluids in the downdragged hydrous peridotite layer at the base of the mantle wedge through the following reactions: decompositions of pargasitic amphibole to form phlogopite and breakdown of phlogopite to crystallize K-richterite, beneath the volcanic front and the backarc-side volcanoes, respectively.  相似文献   
42.
Free-air gravity anomaly in plate subduction zones, characterized by island-arc high, trench low and outer-rise gentle high, reflects the cumulative effects of long-term crustal uplift and subsidence. In northeast Japan the island-arc high of observed free-air gravity anomaly takes its maximum about the eastern coastline. On the other hand, the current vertical crustal motion estimated from geological and geomorphological observations shows a gentle uplift in the land area and steep subsidence in the sea area with the neutral point near the eastern coastline. Such a discrepancy in spatial patterns between the free-air gravity anomaly and current vertical crustal motion can be ascribed to a change in the mode of crustal uplift and subsidence associated with the initiation of tectonic erosion at the North American-Pacific plate interface. We developed a realistic 3-D simulation model of steady plate subduction with tectonic erosion in northeast Japan on the basis of elastic/viscoelastic dislocation theory. Through numerical simulations with this model we found that simple steady plate subduction brings about the crustal uplift characterized by island-arc high with its maximum about the eastern coastline, while steady plate subduction with tectonic erosion, which is represented by the landward retreat of the plate interface, brings about gentle uplift in the land area and steep subsidence in the sea area with the neutral point near the eastern coastline. Therefore, if we suppose that tectonic erosion started 3–4 million years ago after the long duration of simple steady plate subduction, we can consistently explain both patterns of free-air gravity anomaly and current crustal uplift in northeast Japan.  相似文献   
43.
We have estimated the timescale of material circulation in the Sanbagawa subduction zone based on U–Pb zircon and K–Ar phengite dating in the Ikeda district, central Shikoku. The Minawa and Koboke units are major constituents of the high‐P Sanbagawa metamorphic complex in Shikoku, southwest Japan. For the Minawa unit, ages of 92–81 Ma for the trench‐fill sediments, are indicated, whereas the age of ductile deformation and metamorphism of garnet and chlorite zones are 74–72 Ma and 65 Ma, respectively. Our results and occurrence of c. 150 Ma Besshi‐type deposits formed at mid‐ocean ridge suggest that the 60‐Myr‐old Izanagi Plate was subducted beneath the Eurasian Plate at c. 90 Ma, and this observation is consistent with recent plate reconstructions. For the Koboke unit, the depositional ages of the trench‐fill sediments and the dates for the termination of ductile deformation and metamorphism are estimated at c. 76–74 and 64–62 Ma, respectively. In the Ikeda district, the depositional ages generally become younger towards lower structural levels in the Sanbagawa metamorphic complex. Our results of U–Pb and K–Ar dating show that the circulation of material from the deposition of the Minawa and Koboke units at the trench through an active high‐P metamorphic domain to the final exhumation from the domain occurred continuously throughout c. 30 Myr (from c. 90 to 60 Ma).  相似文献   
44.
Monitoring using a thermistor array and an acoustic Doppler current profiler was carried out in the outer part of Tokyo Bay from May 20 to November 30, 2006. Current fluctuations with tidal periods were amplified during the maximum temperature period in early September. The strong current interfered with fishing operations using set nets. Although the current fluctuation was speculated to be baroclinic motion from a phase relationship among fluctuations of temperature, current and sea level, empirical orthogonal function analysis showed the dominance of a barotropic structure. Such a discrepancy in the current structure was explained by an internal tide propagating along a deep canyon in the outer part of Tokyo Bay. Furthermore, amplification of the semidiurnal internal tide and the warming of the temperature field were found to be induced by the intrusion of Kuroshio warm water. The amplification mechanism was examined using a two-dimensional model with idealized topography. It was concluded that the large amplitude of the semidiurnal internal tide is resonantly generated in the deep canyon in the outer Tokyo Bay when stratification becomes strong and the period of the internal seiche approaches the semidiurnal period.  相似文献   
45.
Three specimens of killer whales (Orcinus orca), an open ocean carnivore, were analysed for extremely toxic polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) to understand their long-range distribution patterns. Several PCDF congeners, including the highly toxic 2,3,7,8-tetra- and 2,3,4,7,8-penta-CDFs were identified in the blubber of those specimens. The PCDF isomeric pattern in killer whale is more complex than the reported patterns in humans and birds, indicating the weaker metabolic potency of killer whales for these toxic compounds. High levels of PCBs (about 400 mg kg−1) have also been detected in those specimens. The 2,3,7,8-substituted PCDF congeners identified in commercial PCBs were also found in killer whale, indicating PCBs as the possible source. Isomer-specific and trace level determinations of PCDD in killer whale, revealed no detectable quantities. The detection of comparatively high levels ( > 300 ng kg−1) of PCDFs and undetection of PCDDs in open ocean killer whales suggest that PCDFs are more ubiquitous than PCDDs.  相似文献   
46.
The relatively slow flow and exchange of Carr Inlet water with the main basin of Puget Sound, Washington, favor eutrophication. To study Carr Inlet’s circulation, the Model-measurement Integration Experiment in Estuary Dynamics (MIXED) was conducted in March–May 2003, spanning the spring bloom. From observations and numerical simulations the circulation was decomposed into tidal and subtidal components; the former was dominated by the M2 tide, the latter by atmospheric forcing. Near the surface, the subtidal velocity was correlated with wind. At mid depths, the subtidal velocity was organized into vertical bands arising from internal waves excited by wind forcing of the water surface. The tidal flow was more strongly steered by local bathymetry and weaker in peak magnitudes than the subtidal flow, yet it contributed more mechanical energy to the inlet. Tidal eddies reduce exchange of water through the inlet’s entrances. Numerical simulations with the Princeton Ocean Model recreated many observed features, including the three-layer vertical structure of outflow at the surface and bottom and inflow at mid depth, the mid-depth subtidal response to the wind, and characteristics of the tide. While the model produced greater subtidal flow magnitudes at depth and differences in the phase of the M2 tide compared to observations, overall the case study provided support for more comprehensive simulations of Puget Sound in the future.  相似文献   
47.
48.
In young suduction zones we observe steady uplift of island arcs. The steady uplift of island arcs is always accompanied by surface erosion. The long duration of uplift and erosion effectively transports heat at depth to shallower parts by advection. If the rates of uplift and erosion are sufficiently large, such a process of heat transportation will strongly affect thermal structure in subduction zones. First, we quantitatively examine the effects of uplift and erosion on thermal structure by using a simple 1-D heat conduction model, based on the assumption that the initial thermal state is in equilibrium. The results show that temperature increase, Δ T  , due to uplift and erosion can be approximately evaluated by Δ T  = ν e tβ at depth, where ν e is the rate of uplift (erosion), t is the duration of uplift (erosion), and β is the gradient of the geotherm in the initial state. Next, considering the effects of vertical crustal movements such as uplift and erosion in island arcs and subsidence and sedimentation in ocean trenches, in addition to the effects of radioactive heat generation in the crust, frictional heating at plate boundaries and accretion of oceanic sediments to overriding continental plates, we numerically simulate the evolution process of the thermal structure in subduction zones. The result shows that the temperature beneath the island arc gradually increases as a result of uplift and erosion as plate subduction progresses. Near the ocean trench, on the other hand, the low-temperature region gradually expands as a result of sedimentation and accretion in addition to direct cooling by the cold descending slab. The surface heat flow expected from this model is low in fore-arc basins, high in island arcs and moderately high in back-arc regions.  相似文献   
49.
50.
The phase transformation of schwertmannite, an iron oxyhydroxide sulfate nanomineral synthesized at room temperature and at 75 °C using H2O2 to drive the precipitation of schwertmannite from ferrous sulfate (Regenspurg et al. in Geochim Cosmochim Acta 68:1185–1197, 2004), was studied using high-resolution transmission electron microscopy. The results of this study suggest that schwertmannite synthesized using this method should not be described as a single phase with a repeating unit cell, but as a polyphasic nanomineral with crystalline areas spanning less than a few nanometers in diameter, within a characteristic ‘pin-cushion’-like amorphous matrix. The difference in synthesis temperature affected the density of the needles on the schwertmannite surface. The needles on the higher-temperature schwertmannite displayed a dendritic morphology, whereas the needles on the room-temperature schwertmannite were more closely packed. Visible lattice fringes in the schwertmannite samples are consistent with the powder X-ray diffraction (XRD) pattern taken on the bulk schwertmannite and also matched d-spacings for goethite, indicating a close structural relationship between schwertmannite and goethite. The incomplete transformation from schwertmannite to goethite over 24 h at 75 °C was tracked using XRD and TEM. TEM images suggest that the sample collected after 24 h consists of aggregates of goethite nanocrystals. Comparing the synthetic schwertmannite in this study to a study on schwertmannite produced at 85 °C, which used ferric sulfate, reveals that synthesis conditions can result in significant differences in needle crystal structure. The bulk powder XRD patterns for the schwertmannite produced using these two samples were indistinguishable from one another. Future studies using synthetic schwertmannite should account for these differences when determining schwertmannite’s structure, reactivity, and capacity to take up elements like arsenic. The schwertmannite synthesized by the Regenspurg et al. method produces a mineral that is consistent with the structure and morphology of natural schwertmannite observed in our previous study using XRD and TEM, making this an ideal synthetic method for laboratory-based mineralogical and geochemical studies that intend to be environmentally relevant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号