首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
地球物理   26篇
地质学   19篇
海洋学   10篇
自然地理   11篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有66条查询结果,搜索用时 27 毫秒
11.
This paper first describes the atmospheric correction algorithm for OCTS visible band data used at NASDA/EOC. Sharing a basic structure with Gordon and Wang’s Sea WiFS algorithm, it uses 10 candidate aerosol models including the “Asian dust model” introduced in consideration of the unique feature of aerosols over the east Asian waters. Based on the observations at 670 and 865 nm bands, the algorithm selects a pair of aerosol models that account best for the observed spectral reflectances, and synthesizes the aerosol reflectance used for the atmospheric correction. Two different schemes for determining the value of the parameter for the aerosol model selection are presented and their anticipated estimation error is analyzed in terms of retrieved water reflectance at 443 nm. The results of our numerical simulation show that the standard deviation of the estimation error of the “weighted average” scheme is mostly within the permissible level of ±0.002, reducing the error by 18% on average compared to the “simple average” scheme. The paper further discusses the expected error under the old CZCS-type atmospheric correction, which assumes constant aerosol optical properties throughout the given image. Although our algorithm has a better performance than the CZCS algorithm, further analysis shows that the error induced by the assumption taken in the algorithm that the water-leaving radiance at 670 nm band is negligibly small may be large in high pigment concentration waters, indicating the necessity for future improvements.  相似文献   
12.
We developed an inversion method to estimate the stress fields related to earthquake generation (seismogenic stress fields) from the centroid moment tensors (CMT) of seismic events by using Akaike's Bayesian information criterion (ABIC). On the idea that the occurrence of an earthquake releases some part of the seismogenic stress field around its hypocentre, we define the CMT of a seismic event by a weighted volume integral of the true but unknown seismogenic stress field. Representing each component of the seismogenic stress field by the superposition of a finite number of 3-D basis functions (tri-cubic B-splines), we obtain a set of linear observation equations to be solved for the expansion coefficients (model parameters). We introduce prior constraint on the roughness of the seismogenic stress field and combine it with observed data to construct a Bayesian model with hierarchic, highly flexible structure controlled by hyper-parameters. The optimum values of the hyper-parameters are objectively determined form observed data by using ABIC. Given the optimum values of the hyper-parameters, we can obtain the best estimates of model parameters by using a maximum likelihood algorithm. We tested the validity of the inversion method through numerical experiments on two synthetic CMT data sets, assuming the distribution of fault orientations to be aligned with the maximum shear stress plane in one case and to be random in the other case. Then we applied the inversion method to actual CMT data in northeast Japan, and obtained the pattern of the seismogenic stress field consistent with geophysical and geological observations.  相似文献   
13.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   
14.
15.
16.
17.
The evidence of east-west compression in northeast Japan has been reported by many investigators on the basis of geodetic, geologic and geomorphic data, but its origin still remains far from understood. In the present study we have proposed a mechanical model of tectonic loading at convergent plate boundary zones, and demonstrated its validity through the numerical simulation of internal stress fields in northeast Japan with realistic 3-D geometry of plate interfaces. At convergent plate boundary zones, in general, a part of plate convergence is consumed by steady slip along plate interfaces, and the remaining part by inelastic deformation (seismic faulting, aseismic faulting, and active folding) of overriding plates. Such a plate boundary process to be called ``partial collision' can be quantitatively described by introducing a collision rate defined as c = 1 − steady slip rate at plate interfaces/plate convergence rate. By this definition, we can simply represent the mechanical process of partial collision, which includes total subduction (c = 0) and total collision (c = 1) as two extreme cases, in terms of steady slip rates at plate interfaces. On the basis of elastic dislocation theory, first, we numerically computed the internal stress fields in northeast Japan produced by the total subduction of the Pacific plate beneath the North American plate, however the computed stress pattern was opposite in sense to observations. Then, we computed the internal stress fields by taking c = 0.1 on average, and succeeded in reproducing the observed east-west compression in northeast Japan. This indicates that the concept of partial collision is essential to understand the mechanism of intraplate tectonic loading.  相似文献   
18.
The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   
19.
A number of microstructural features indicate a difference in the dominant deformation mechanism between the higher temperature Ryoke and the lower temperature Sambagawa and Shimanto metamorphic belts of Japan. The microstructures of metacherts containing deformed radiolaria are divided into two types: in both the Sambagawa and Shimanto belts the quartz grains are tabular while in the Ryoke belt they are equiaxed. TEM studies of these metacherts revealed that the tabular grains contain abundant subboundaries consisting of large numbers of network dislocations and bowe-out dislocations, while the equiaxed grains contain no subboundaries and have low densities of dislocations which are not bowed-out. There is a corresponding difference in the textures (lattice preferred orientation of quartz): the Ryoke metacherts display randomly distributed c-axes of quartz, while the Sambagawa and Shimanto metacherts show conspicuous crossed girdle patterns with some asymmetry. There is a third difference between these regions: in the metacherts of the Ryoke metamorphic belt, the strain magnitudes determined from deformed radiolaria increase with increasing volume fraction of mica in the same metamorphic P and T conditions, while in the Sambagawa and the Shimanto metamorphic cherts the strain magnitudes decrease with increasing the mica fraction.These microstructures, textures, and rheological behaviours of quartz-mica rocks suggest a change of deformation mechanism between the lower temperature Sambagawa and Shimanto, and the higher temperature Ryoke metamorphic belts. Since random fabrics of c-axes of quartz are inconsistent with lattice rotation due to dislocation glide, the Ryoke metacherts may have deformed by pressure-solution.  相似文献   
20.
The difference in pressure condition of progressive metamorphism established by Schreinemakers' analysis of mineral assemblages in metabasalts makes it possible for the low grade metamorphism of the Izu-Tanzawa-Fujigawadani collision zone to be divided into three types. Type I is characterized by prehnite + epidote + hematite, suggesting the lowest pressure type; whereas type II is defined by prehnite + epidote + actinolite—the intermediate pressure type, and finally the distinctive assemblage of type III is pumpellyite + epidote + actinolite—the higher pressure type. The pressure conditions estimated are about 1 kbar for type I, 1–2 kbar for type II and 2–3 kbar for type III. The metamorphic rocks of type III occur in the southwestern part of the Tanzawa Mountains, and the metamorphic rocks of type I occur in the central Izu Peninsula and the northeast Tanzawa Mountains. Therefore, the upward displacement of the accretion mass due to collision deformation is most significant at the southwest Tanzawa Mountains. This suggests that the accretion of the Tanzawa and Izu blocks is accompanied with large-scale tilting of the mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号