首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   29篇
  国内免费   5篇
测绘学   19篇
大气科学   40篇
地球物理   119篇
地质学   147篇
海洋学   50篇
天文学   26篇
综合类   2篇
自然地理   29篇
  2023年   3篇
  2022年   6篇
  2021年   13篇
  2020年   15篇
  2019年   12篇
  2018年   24篇
  2017年   21篇
  2016年   27篇
  2015年   21篇
  2014年   11篇
  2013年   27篇
  2012年   31篇
  2011年   25篇
  2010年   26篇
  2009年   16篇
  2008年   25篇
  2007年   15篇
  2006年   18篇
  2005年   8篇
  2004年   15篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   6篇
  1989年   2篇
  1987年   4篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1977年   3篇
  1975年   3篇
  1973年   1篇
  1971年   1篇
排序方式: 共有432条查询结果,搜索用时 15 毫秒
11.
Interpretation of the recent high-resolution survey, CANADOU 2000, in the Bay of Douarnenez (Finistère, France) allowed us to restore the morphology of the substratum and the sedimentary filling of the bay. The Brioverian and Palaeozoic substratum reveals a well-defined network of incised valleys as results of successive emergence stages of the Bay during the Quaternary. Valleys join in a westward-widened mean valley, called Ys Valley. The present-day sedimentary fill of the bay of Douarnenez appears mainly controlled by the Holocene rise and the consecutive highstand. It comprises fluvial and estuarine deposits filling up incised valleys and marine sedimentation extending out of the incised valleys. To cite this article: G. Jouet et al., C. R. Geoscience 335 (2003).To cite this article: G. Jouet et al., C. R. Geoscience 335 (2003).  相似文献   
12.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
13.
14.
Charging undergraduate geography students with the task of designing a recreational trail in their local community offers an engaging experiential opportunity with potential to advance geographic learning in a real-world setting. This article presents an assignment in which students were asked to develop a recreational trail proposal for an undeveloped local conservation area and the results of a survey that asked the students to reflect and report upon the educational value of this experience one year later. Results of the survey validated the assignment's lasting value to the students across the cognitive, psychomotor, and affective learning domains.  相似文献   
15.
16.
17.
18.
A single specimen of the pelagic shrimps, Pasiphaea japonica Omori, 1976 (Pasiphaeidae) collected in the southeastern waters of Korea is described and illustrated. Although this species occurs widely in the Indo-West Pacific including the Japanese coast of the East/Japan Sea and the middle and southern parts of the East China Sea, this is the first record of the species and the genus in Korean waters. The species is distinguished from other congeners by the following combination of characteristics: non-carinate dorsal sixth abdominal somite with a terminal tooth, rudimentary pleurobranch on the eighth thoracic somite, merus of the first pereopod with more than eight spines, and almost entirely transparent white color.  相似文献   
19.
Hydrocarbon reservoir modelling and characterisation is a challenging subject within the oil and gas industry due to the lack of well data and the natural heterogeneities of the Earth’s subsurface. Integrating historical production data into the geo-modelling workflow, commonly designated by history matching, allows better reservoir characterisation and the possibility of predicting the reservoir behaviour. We present herein a geostatistical-based multi-objective history matching methodology. It starts with the generation of an initial ensemble of the subsurface petrophysical property of interest through stochastic sequential simulation. Each model is then ranked according the match between its dynamic response, after fluid flow simulation, and the observed available historical production data. This enables building regionalised Pareto fronts and the definition of a large ensemble of optimal subsurface Earth models that fit all the observed production data without compromising the exploration of the uncertainty space. The proposed geostatistical multi-objective history matching technique is successfully implemented in a benchmark synthetic reservoir dataset, the PUNQ-S3, where 12 objectives are targeted.  相似文献   
20.

Background

The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013–2020) was accounting mitigation as deviation from a projected (forward-looking) “forest reference level”, which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.

Results

Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013–2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110–120 Mt CO2/year (capped at 70–80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000–2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000–2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.

Conclusions

Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号