首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2377篇
  免费   68篇
  国内免费   61篇
测绘学   67篇
大气科学   378篇
地球物理   529篇
地质学   589篇
海洋学   626篇
天文学   185篇
综合类   36篇
自然地理   96篇
  2024年   2篇
  2023年   5篇
  2022年   21篇
  2021年   38篇
  2020年   40篇
  2019年   48篇
  2018年   116篇
  2017年   110篇
  2016年   159篇
  2015年   76篇
  2014年   152篇
  2013年   211篇
  2012年   103篇
  2011年   142篇
  2010年   145篇
  2009年   145篇
  2008年   136篇
  2007年   135篇
  2006年   107篇
  2005年   101篇
  2004年   103篇
  2003年   67篇
  2002年   54篇
  2001年   48篇
  2000年   33篇
  1999年   32篇
  1998年   23篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有2506条查询结果,搜索用时 15 毫秒
961.

Background  

The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules) and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu).  相似文献   
962.
We have compared near-fault ground motions from TeraShake simulations of Mw7.7 earthquake scenarios on the southern San Andreas Fault with precariously balanced rock locations. The TeraShake scenarios with different directions of rupture generate radically different ground motions to the northwest of the Los Angeles Basin, primarily because of directivity effects, and thus provide constraints on the ground motion and rupture direction for the latest (1690) large event on that section of the San Andreas Fault. Due to the large directional near-field ground motions predicted by the simulations, we expect the precariously balanced rocks to be located primarily in the backward rupture direction or near the epicenter. Preliminary results favor persistent nucleation at or slightly northwest of the San Gorgonia Pass fault zone for large earthquakes on the southern San Andreas Fault.  相似文献   
963.
This study analyzed the influence of large-scale climate pattern on precipitation in the Colorado River Basin. Large-scale climatic oscillations, like ENSO, PDO, NAO, and the global warming trend are associated with regional hydrologic variation. Ten types of climate indices were gathered and analyzed to investigate their influence on seasonal precipitation variation in the basin based on a linear correlation analysis and an influence index analysis. The influence index was developed in this study to measure the effect of climate variation on the seasonal precipitation in the basin. The statistical evidence achieved in this study confirms that the Colorado River Basin is subjected to the phase of climate variation. The strength of the seasonal response of precipitation to the climate variation varies in different localities in the basin. The methods of analysis used in this study were proposed in the hope that progress in understanding and modeling dynamic climatic systems can result in developing a valuable long-term forecasting model for water resources management.  相似文献   
964.
A systematic, seven-step approach to integrated watershed planning and management is applied to an urbanized watershed, the Anyangcheon (AY) watershed in Korea which consists of (1) understanding watershed components and processes, (2) identifying and ranking problems to be solved, (3) setting clear and specific goals, (4) developing a list of management options, (5) eliminating infeasible options (6) testing the effectiveness of remaining feasible options, and (7) developing the final options. Watershed characteristics, water quantity and quality simulations with SWAT and PLOAD models, and the developed problem indices of PFD (Potential Flood Damage), PSD (Potential Streamflow Depletion), and PWQD (Potential Water Quality Deterioration) identify that streamflow depletion is more serious than flood risk and water pollution in the study watershed (Steps 1 and 2). Instreamflow requirements, which are the maximum value of the average low flow and the fish flow, are estimated using regional regression and the software PHABSIM (Step 3). Feasible solutions that improve the depleted streams are listed and screened qualitatively against technical, economical, and environmental criteria (Steps 4 and 5). Effectiveness of the remaining 14 feasible alternatives are then analyzed using SWAT (Step 6) and alternative evaluation index (AEI) and their priority ranks are determined against an evaluation criterion that uses the concept of pressure, state, and response (Step 7).  相似文献   
965.
Microbubble suspensions were generated as an oxygen carrier for aerobic biodegradation, and their flow characteristics in porous media were investigated. Commercial surfactants including sodium dodecyl sulfate (SDS), and dodecylethyldimethylammonium bromide (DEDAB), saponin (a natural surfactant), and collagen (a protein hydrolysate) were examined as base materials for generating microbubble suspensions. Among them, 2×CMC (critical micellar concentration) of SDS, DEDAB, and saponin developed microbubble suspensions with the highest gas hold‐up and half‐drainage time. Visualization of the flow patterns in sand showed that the microbubble suspensions were separated into a liquid and gas phase directly after injection, showing much faster movement of liquid phase flow. The gas front of the microbubble suspensions flowed in a plug‐flow manner, particularly in cases of SDS and DEDAB. The experimental results from both homogeneous and heterogeneous cells confirmed that the microbubble flow could overcome the heterogeneity in porous media. However, the plug‐flow characteristics and flow propagation of the microbubble suspensions to the low‐permeability zone was accompanied by a large pressure drop, which needs to be considered for future field application.  相似文献   
966.
The transport and dilution dynamics of power-plant thermal effluent were measured for 10 consecutive days, between 25 June and 4 July 2006, by concurrently mapping the daily distributions of seawater temperature and concentrations of deliberately released sulfur hexafluoride (SF(6)) within the tidal Kwangyang Bay on the southern coast of Korea. Estimates of the daily extent of the thermal plume based on temperature and SF(6) data showed distinct differences. These differences were particularly pronounced on sunny days during which solar radiation significantly heated river or bay waters moving across the tidal flats; in these cases, the estimates based on seawater temperature data were consistently greater than those based on SF(6) data, indicating considerable overestimates of the extent of the thermal plume when temperature data were used. The present results indicate that the concurrent use of seawater temperature and SF(6) data is a powerful method in determining the extent of thermal plumes, particularly for shallow areas in which the effects of solar heating lead to large uncertainties in temperature-based estimates.  相似文献   
967.
The purpose of this study was to compare enzymatic biomarker activities in fish caged at two sites, Masan Bay (contaminated) and Haeguemgang (reference). In the present study, ethoxyresorufin O-deethylase (EROD), brain acetyl cholinesterase (bAChE), muscle acetyl cholinesterase (mAChE) and butyryl cholinesterase (mBChE) in caged rockfish (Sebastes schlegeli) were measured 0, 1, 3, 7, 14, 21 and 30 days after caging. The level of CYP1A mRNA and Protein expression was induced higher in Masan Bay at 1, 3, 7, 14 and 30 days after caging. EROD activity in the caged fish was significantly higher in Masan Bay than in Haeguemgang 3 and 7 days after caging, but not at 14 and 30 days after caging. bAChE activity was significantly inhibited at 7 and 14 days after caging in Masan Bay. However, mBChE activity was not significantly inhibited during the experiment. Taken together, the data suggest that the caged fish were exposed, at least transiently, to CYP1A inducers and ChE inhibitors, which is consistent with our previous observations.  相似文献   
968.
We study the possibilities of the Theoretical Ionosphere Model (TIM) developed at the Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences, for calculating the HF-radiowave propagation characteristics. The results of simulation based on the TIM are compared with calculations based on the IRI model and data from experimental observations. Analysis of the results of calculations for the maximum usable frequency (MUF) have shown that with the same input data (coordinates of the receipt and transmission points, the route length, date, and time), the differences in the calculated MUFs (using two different models supplying radio routes with ionospheric information) amount to ∼1% in the daytime and reach 10% at night.  相似文献   
969.
To respond to the need for preventing offshore and coastal accidents, damage and flooding, a state-of-the-art coastal wave forecast system for the East Coast of Korea waters is being developed. Given that the quality of the input wind has been identified as the main factor influencing the quality of the wave results, the effectiveness of adjusting the wind fields by means of data assimilation using the ensemble Kalman filter technique has been explored. In this article the model setup, the data assimilation parameters and the validation of the predictions during stormy periods is described. The validation shows that the model is able to provide predictions of coastal waves fulfilling available benchmarks; especially, the data assimilation analysis and forecast predictions are judged to be of high quality.  相似文献   
970.
This research investigates the effect of climate change on the thermal structure of lakes in response to watershed hydrology. We applied a hydrodynamic water quality model coupled to a hydrological model with a future climate scenario projected by a GCM A2 emission scenario to the Yongdam Reservoir, South Korea. In the climate change scenario, the temperature will increase by 2.1°C and 4.2°C and the precipitation will increase by 178.4?mm and 464.4?mm by the 2050 and 2090, respectively, based on 2010. The pattern changes of precipitation and temperature increase due to climate change modify the hydrology of the watershed. The hydrological model results indicate that they increase both surface runoff itself and temperature. The reservoir model simulation with the hydrological model results showed that increasing air temperature is related to higher surface water temperature. Surface water temperature is expected to increase by about 1.2°C and 2.2°C from the 2050 and 2090, respectively, based on the 2010 results. The simulation results of the effects of climate warming on the thermal structure of the Asian Monsoon Area Lake showed consistent results with those of previous studies in terms of greater temperature increases in the epilimnion than in the hypolimnion, increased thermal stratification, and decreasing thermocline depths during the summer and fall. From this study, it was concluded that the hydrodynamic water quality model coupled to the hydrological model could successfully simulate the variability of the epilimnetic temperature, changed depth and magnitude of the thermocline and the changed duration of summer stratification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号