An important stage in two-dimensional magnetotelluric modelling is the calculation of the Earth's response functions for an assumed conductivity model and the calculation of the associated Jacobian relating those response functions to the model parameters. The efficiency of the calculation of the Jacobian will affect the efficiency of the inversion modelling. Rodi (1976) produced all the Jacobian elements by inverting a single matrix and using an approximate first-order algorithm. Since only one inverse matrix required calculation the procedure speeded up the inversion. An iterative scheme to improve the approximation to the Jacobian information is presented in this paper. While this scheme takes a little longer than Rodi's algorithm, it enables a more accurate determination of the Jacobian information. It is found that the Jacobian elements can be produced in 10% of the time required to calculate an inverse matrix or to calculate a 2D starting model. A modification of the algorithm can further be used to improve the accuracy of the original inverse matrix calculated in a 2D finite difference program and hence the solution this program produces. The convergence of the iteration scheme is found to be related both to the originally calculated inverse matrix and to the change in the newly formed matrix arising from perturbation of the model parameter. A ridge regression inverse algorithm is used in conjunction with the iterative scheme for forward modelling described in this paper to produce a 2D conductivity section from field data. 相似文献
Natural Hazards - It is necessary to analyze the future runoff changes using a more realistic climate classification scheme. This paper investigates the climate changes and runoff variation by... 相似文献
Water relation characteristics of the desert legumeAlhagi sparsifolia were investigated during the vegetation period from April to September 1999 in the foreland of Qira oasis at the southern fringe of the Taklamakan Desert, Xinjiang Uygur Autonomous Region of China. The seasonal variation of predawn water potentials and of diurnal water potential indicated thatAlhagi plants were well water supplied over the entire vegetation period. Decreasing values in the summer months were probably attributed to increasing temperatures and irradiation and therefore a higher evapotranspirative demand. Data from pressure-volume analysis confirmed thatAlhagi plants were not drought stressed and xylem sap flow measurements indicated thatAlhagi plants used large amounts of water during the summer months. Flood irrigation had no influence on water relations inAlhagi probably becauseAlhagi plants produced only few fine roots in the upper soil layers. The data indicate thatAlhagi sparsifolia is a drought-avoiding species that utilizes ground water by a deep roots system, which is the key characteristic to adjust the hyper-arid environment. Because growth and survival ofAlhagi depends on ground water supply, it is important that variations of ground water depth are kept to a minimum. The study will provide a theoretical basis for the restoration and management of natural vegetation around oasis in arid regions.
— It is difficult to compute synthetic seismograms for a layered half-space with sources and receivers at close to or the same depths using the generalized R/T coefficient method (Kennett, 1983; Luco and Apsel, 1983; Yao and Harkrider, 1983; Chen, 1993), because the wavenumber integration converges very slowly. A semi-analytic method for accelerating the convergence, in which part of the integration is implemented analytically, was adopted by some authors (Apsel and Luco, 1983; Hisada, 1994, 1995). In this study, based on the principle of the Repeated Averaging Method (Dahlquist and Björck, 1974; Chang, 1988), we propose an alternative, efficient, numerical method, the peak-trough averaging method (PTAM), to overcome the difficulty mentioned above. Compared with the semi-analytic method, PTAM is not only much simpler mathematically and easier to implement in practice, but also more efficient. Using numerical examples, we illustrate the validity, accuracy and efficiency of the new method. 相似文献
The factors affecting permeability change under repeated mining of coal seams are important study aspects that need to be explored. This study combined various stress variation characteristics of protective seam mining and simplified the stress path of repeated mining in protective seam mines. Based on the results from the bespoke gas flow and displacement testing apparatus, seepage tests for simulated repetitive mining were carried out. The results simulated the actual behavior very well. With any drastic increase in the mining influence, the axial deviation stress in the stress path increased, and the greater the difference in coal permeability during the unloading and stress recovery stage, the more substantial the increase in permeability. The change in coal permeability was significantly influenced by the severity of simulated repeated mining cycles. When the mining stress exceeded a critical value, the permeability of the coal sample increased with the increase in the number of loading and unloading cycles, but the reverse was true when the mining stress was lower than the critical value. The effective sensitivity of seepage to the applied stress decreased with an increase in the number of stress cycles. With a decrease in the deviation stress, that is, with lower severity of mining influence, the effective sensitivity of coal seepage to stress gradually decreased.
Journal of Geographical Sciences - The dramatic land use changes that occur in rapidly urbanized areas are important inducement to changes in the eco-environmental quality. Investigating urban land... 相似文献