首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
大气科学   4篇
地球物理   5篇
地质学   14篇
天文学   3篇
自然地理   11篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2010年   2篇
  2009年   6篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
31.
This article reviews and analyzes the available information on range and livestock production in the Monte Desert. Cow–calf operations, goats for meat, and sheep for wool are the dominant production systems under continuous grazing. Rest-rotational grazing systems improved the efficiency of the current cow–calf production. Forage resources are primarily composed of perennial grasses and woody species. Rain-use efficiency for the total vegetation ranged from 3.9 to 4.8 kg DM ha?1 year?1 mm?1. Carrying capacity showed a broad range: 18.7, 4.5–64.5, and 21.6–89.3 ha AU?1 in the north, central, and south portions of the Monte, respectively. Mean crude protein (CP) content of grasses varied from 8.4 to 10.3 (wet season) and 7.1–3.7% DM (dry season) in the central west and Patagonia, respectively. Grasses predominated in the cattle diet, while the sheep diet was highly diverse because they ate most of the available plant species, and there was no unanimity as to the fact that goats are strictly browsers. Livestock diseases have lower prevalence indices than those recorded in other areas of the country. The high variability in carrying capacity values could be attributed to differences in rangeland condition and to the different methods used for its estimation. The CP levels in forage could meet cattle requirements provided that a proper-stocking rate were used. The most promising species for land rehabilitation are Opuntia, Atriplex spp., Eragrostis curvula and Cenchrus ciliaris. Priorities for future research should include topics such as assessment of the carrying capacity for most of the areas and nutrient content of the components of livestock diet, the livestock intake values, the economic feasibility of the use of complementary feeds and the development of seeding technology for valuable forage resources as Trichloris crinita, among others.  相似文献   
32.
This study places new constraints on the pressure–temperature (P–T) path and duration of high‐temperature (HT) metamorphism recorded by Archean granulite facies metasedimentary rocks from the northern Wyoming Province in the eastern Beartooth Mountains, MT and WY, USA. These rocks exist as m‐ to km‐scale xenoliths within a c. 2.8 Ga calc‐alkaline granitoid batholith. Different interpretations of the timing of HT metamorphism relative to batholith intrusion in previous works have led to ambiguity over the mechanism by which these rocks were heated (i.e. batholith intrusion v. a later, cryptic event). The P–T path recorded by these rocks and the duration of this path may be indicative of the heating mechanism but are not currently well constrained. Here, we combine phase equilibria thermobarometry and diffusion modelling of major element zonation in garnet in order to constrain the P–T path of HT metamorphism and the durations of different parts of this path. It is shown that these rocks record a tight, clockwise P–T path characterized by near‐isobaric heating at ~6.5–7 kbar to ?770–800°C, HT decompression to ~6 kbar, 780–800°C, followed by limited decompression while cooling. Diffusion modelling of major element zonation in garnet suggests that HT decompression was brief (likely <1 Ma), and that cooling rates following this decompression were on the order of 10–100°C/Ma. Substantial changes in apparent thermal gradient along this P–T path indicate that the rocks record a significant but short‐lived thermal anomaly that occurred in the Wyoming mid‐crust in the Late Archean.  相似文献   
33.
Thermodynamic modelling and calculation of P–T pseudosections are commonly employed for quantifying the P–T evolution of metamorphic rocks. A key assumption involved in interpreting a P–T pseudosection is that the bulk‐rock composition used is representative of the effective bulk composition (EBC) from which apparently equilibrated mineral assemblages grew. Choosing an EBC can be difficult in cases where the rock has evolved significantly throughout the P–T history and has become domainal for whatever reason (e.g. loss of fluid and/or melt), particularly at suprasolidus conditions. During partial melting, melt migration may not only change the bulk composition by melt loss but also may generate local variations due to the variable consumption/loss of melt from domain to domain to create volumes of rock that were once internally equilibrated in the presence of a grain boundary melt, but which departed from equilibrium as inter‐granular mobility was slowed by local reductions in melt volume. As well as careful consideration of an EBC, the results of thermodynamic modelling are highly dependent on the specific thermodynamic data set and solution models used, as updates to these data sets may lead to substantially different calculated phase equilibria. This contribution addresses: (1) how consideration of evolving EBCs at multiple scales of observation can be used to resolve the history of complex high‐grade rocks, and (2) how use of different thermodynamic data sets and a–x models (i.e. thermocalc ds5.5 v. ds6) can result in different interpretations of metamorphic evolution. This study investigates the evolution of a mineralogically heterogeneous and texturally complex hand sample of granulite from the Gruf Complex (Central Alps). At the hand‐specimen scale, an EBC can be identified and used to constrain the P–T conditions at which the ‘whole rock’ was last in mutual equilibrium, in the presence of intergranular melt that has subsequently been lost or consumed. Smaller macrodomains (~cm scale) and microdomains (~mm scale) can be identified that represent subsequent evolution during and after melt channelization and loss, and P–T pseudosections can be calculated for the compositions of these domains. Using this approach reveals that the sample experienced a clockwise P–T path marked by near‐isothermal decompression following attainment of peak UHT conditions (~960 °C, 8.5 kbar). The approach enables construction of a P–T history of a rock for which P–T pseudosections are otherwise difficult to interpret. Thermodynamic modelling using ds6 yields similar results to those stated above, but suggests: (1) near‐isothermal decompression occurred over a wider pressure range (~0.5 kbar v. 1.5 kbar), and (2) that not all microdomains record this part of the P–T evolution.  相似文献   
34.
35.
A comprehensive reinterpretation of the available gravity, magnetic, geothermal, geological and borehole information has been made of the Laguna Salada Basin to establish a 3D model of the basement and sedimentary infill. According to statistical spectral analysis, the residual gravity anomaly is due to sources with a mean regional depth of 2.8 km. The topography of the basement was obtained from a three‐dimensional inversion carried out in the wavenumber domain using an iterative scheme. The maximum density contrast of ?300 kg/m3 estimated from previous studies and the mean depth of 2.5 km finally constrained this inversion. The resulting model indicated that the sedimentary infill is up to 4.2 km thick at its deepest point. According to the gravity‐derived basement topography, the basin presents an asymmetry (i.e. it is of the half‐graben type). It is deeper to the east, where it is delimited from the Sierra Cucapah by a step fault. By contrast, the limit with the Sierra de Juarez is a gently sloping fault (i.e. a listric fault). The basement is not even, but it comprises a series of structural highs and lows. N–S to NW–SE and E–W to NE–SW faults delimit these structural units. The magnetic modelling was constrained by (i) the gravity‐derived basement topography; (ii) a Curie isotherm assumed to be between 7 km and 10 km; (iii) assuming induced magnetization only; (iv) the available geological and borehole information. The magnetic anomalies were interpreted successfully using the gravity‐derived basement/sedimentary interface as the top of the magnetic bodies (i.e. the magnetic modelling supports the gravity basement topography). An elongated N–S to NW–SE trending highly magnetized body running from south to north along the basin is observed to the west of the basin. This magnetic anomaly has no gravity signature. Such a feature can be interpreted as an intrusive body emplaced along a fault running through the Laguna Salada Basin. Treatment of the gravity and magnetic information (and of their horizontal gradients) with satellite image processing techniques highlighted lineaments on the basement gravity topography correlating with mapped faults. Based on all this information, we derived detailed geological models along four selected profiles to simulate numerically the heat and fluid flow in the basin. We used a finite‐difference scheme to solve the coupled Darcy and Fourier differential equations. According to our results, we have fluid flow in the sedimentary layers and a redistribution of heat flow from the basin axis toward its rims (Sierra de Juárez and Sierra Cucapah). Our model temperatures agree within an error of 4% with the observed temperature profiles measured at boreholes. Our heat‐flow determinations agree within an error of ±15% with extrapolated observations. The numerical and chemical analyses support the hypothesis of fluid circulation between the clay–lutite layer and the fractured granitic basement. Thermal modelling shows low heat‐flow values along the Laguna Salada Basin. Deep fluid circulation patterns were observed that redistribute such flow at depth. Two patterns were distinguished. One displays the heat flow increasing from the basin axis towards its borders (temperature increase of 20°C). The second pattern shows an increasing heat flow from south to north of the basin. Such behaviour is confirmed by the temperature measurements in the thermometric boreholes.  相似文献   
36.
The interaction of relativistic electrons produced by ultrafast lasers focussing them on strongly precompressed thermonuclearfuel is analytically modelled. Energy loss to target electrons is treated through binary collisions and Langmuir wave excitation. The overall penetration depth is determined by quasielastic and multiple scattering on target ions. It thus appears possible to ignite efficient hot spots in a target with density larger than 300 g/cc.  相似文献   
37.
In the wake of the Fukushima nuclear accident, countries like Germany and Japan have planned a phase-out of nuclear generation. Carbon capture and storage (CCS) technology has yet to become a commercially viable technology with little prospect of doing so without strong climate policy to spur development. The possibility of using renewable power generation from wind and solar as a non-emitting alternative to replace a nuclear phase-out or failure to deploy CCS technology is investigated using scenarios from EMF27 and the POLES model. A strong carbon price appears necessary to have significant penetration of renewables regardless of alternative generation technologies available, but especially if nuclear or CCS are absent from the energy supply system. The feasibility of replacing nuclear generation appears possible at realistic costs (evaluated as total abatement costs and final user prices to households); however for ambitious climate policies, such as a 450 ppm target, CCS could represent a critical technology that renewables will not be able to fully replace without unbearable economic costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号