首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   4篇
  国内免费   2篇
测绘学   3篇
大气科学   18篇
地球物理   40篇
地质学   64篇
海洋学   15篇
天文学   107篇
综合类   7篇
自然地理   20篇
  2022年   3篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   10篇
  2015年   8篇
  2014年   14篇
  2013年   12篇
  2012年   5篇
  2011年   19篇
  2010年   9篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   10篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   11篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
  1970年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
271.
We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.  相似文献   
272.
Various EOR methods lead to the appearance of specific macroscopic surfaces called interfaces of phase transition (IPT) such that the number of phases on two sides of an IPT is different, and fluids separated by an IPT are in non-equilibrium. Therefore, the flow equations are also different on two sides of an IPT and cannot be deduced from each other by a continuous degeneration, which imposes difficulties in numerical modelling. To describe such systems, we developed a new conceptual mathematical method based on the replacement of the real single-phase fluid by an imaginary multi-phase multi-component continuum having fictitious properties. As the result, the fluid over all zones becomes multi-phase and can be described by uniform multi-phase hydro- and thermodynamic equations, which allows applying the direct numerical simulation. The equivalence principle determines the physical properties of the fictitious multi-phase fluid, as well as the structure of the uniform multi-phase equations. It also proves that the saturation of each phase becomes an extended function negative or higher than unity in non-equilibrium zones, which becomes the efficient method of tracking the interfaces, the number of phases at any point, and their degree of disequilibrium. The method was developed in [1, 2] for the two-phase case. In the present paper, the new version of the method is developed for the three-phase case with gravity, diffusion, and capillarity. We have obtained the new equivalent uniform multi-phase equations which contain additional non-classical terms responsible for the diffusion and gravity across an IPT. The comparison with classical method is presented. The presentation is illustrated by several examples of simulation by means of the code developed by the research group; their concern: EOR by miscible methods and CO 2 bubble raising in aquifer.  相似文献   
273.
Most of Kazakhstan belongs to the central part of the Eurasian Paleozoic mobile belts for which previously proposed tectonic scenarios have been rather disparate. Of particular interest is the origin of strongly curved Middle and Late Paleozoic volcanic belts of island-arc and Andean-arc affinities that dominate the structure of Kazakhstan. We undertook a paleomagnetic study of Carboniferous to Upper Permian volcanics and sediments from several localities in the Ili River basin between the Tien Shan and the Junggar–Alatau ranges in southeast Kazakhstan. Our main goal was to investigate the Permian kinematic evolution of these belts, particularly in terms of rotations about vertical axes, in the hope of deciphering the dynamics that played a role during the latest Paleozoic deformation in this area. This deformation, in turn, can then be related to the amalgamation of this area with Baltica, Siberia, and Tarim in the expanding Eurasian supercontinent. Thermal demagnetization revealed that most Permian rocks retained a pretilting and likely primary component, which is of reversed polarity at three localities and normal at the fourth. In contrast, most Carboniferous rocks are dominated by postfolding reversed overprints of probably “mid-Permian” age, whereas presumably primary components are isolated from a few sites at two localities. Mean inclinations of primary components generally agree with coeval reference values extrapolated from Baltica, whereas declinations from primary as well as secondary components are deflected counterclockwise (ccw) by up to  90°. Such ccw rotated directions have previously also been observed in other Tien Shan sampling areas and in the adjacent Tarim Block to the south. However, two other areas in Kazakhstan show clockwise (cw) rotations of Permian magnetization directions. One area is located in the Kendyktas block about 300 km to the west of the Ili River valley, and the other is found in the Chingiz Range, to the north of Lake Balkhash and about 400 km to the north of the Ili River valley. The timing of the ccw as well as cw rotations is clearly later than the disappearance of any marine basins from northern Tarim, the Tien Shan and eastern Kazakhstan, so that the rotations cannot be attributed to island-arc or Andean-margin plate settings — instead we attribute the rotations to large-scale, east–west (present-day coordinates), sinistral wrenching in an intracontinental setting, related to convergence between Siberia and Baltica, as recently proposed by Natal'in and Şengör [Natal'in, B.A., and Şengör, A.M.C., 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the palaeo-Tethyan closure, Tectonophysics, 404, 175–202.]. Our previous work in the Chingiz and North Tien Shan areas on Ordovician and Silurian rocks suggested relative rotations of  180°, whereas the Permian declination differences are of the order of 90° between the two areas. Thus, we assume that about 50% of the total post-Ordovician rotations are of pre-Late Permian age, with the other half of Late Permian–earliest Mesozoic age. The pre-Late Permian rotations are likely related to oroclinal bending during plate boundary evolution in a supra-subduction setting, given the calc-alkaline character of nearly all of the pre-Late Permian volcanics in the strongly curved belts.  相似文献   
274.
The sedimentary record from Lake Baikal (Siberia, Russia) has been an important source of information about paleoclimatic variability in the northern hemisphere and dynamics of continental rift development. A lack of reliable chronology has, however, been a major obstacle to fully utilizing the Baikal archive for time scales beyond about 4-5 Myr. In this paper we use the distribution of 10Be to establish a new chronology for the longest core drilled in Lake Baikal so far. The 10Be-based chronology spans the last 8 Myr and provides better constraints on sedimentation rates and consequently on an east-west tectonic extension in the lake, which has been apparently coeval with other rifts in Asia that are related to the Tibetan plateau uplift. Our data also show higher 10Be flux in the sediment section older then 5 Myr compared with the younger period. This can be explained partly by warm and humid climatic conditions of the Miocene and partly by a high cosmic ray flux to the Earth resulting from possible low geomagnetic field intensity during that time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号