首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   32篇
  国内免费   10篇
测绘学   16篇
大气科学   43篇
地球物理   180篇
地质学   142篇
海洋学   44篇
天文学   52篇
综合类   4篇
自然地理   81篇
  2023年   5篇
  2022年   3篇
  2021年   11篇
  2020年   11篇
  2019年   13篇
  2018年   7篇
  2017年   14篇
  2016年   12篇
  2015年   19篇
  2014年   20篇
  2013年   32篇
  2012年   30篇
  2011年   23篇
  2010年   24篇
  2009年   41篇
  2008年   35篇
  2007年   37篇
  2006年   24篇
  2005年   18篇
  2004年   25篇
  2003年   19篇
  2002年   28篇
  2001年   13篇
  2000年   15篇
  1999年   9篇
  1998年   21篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有562条查询结果,搜索用时 0 毫秒
51.
Dehydration melting of muscovite in metasedimentary sequences is the initially dominant mechanism of granitic melt generation in orogenic hinterlands. In dry (vapour-absent) crust, muscovite reacts with quartz to produce K-feldspar, sillimanite, and monzogranitic melt. When water vapour is present in excess, sillimanite and melt are the primary products of muscovite breakdown, and any K-feldspar produced is due to melt crystallization. Here we document the reaction mechanisms that control nucleation and growth of K-feldspar, sillimanite, and silicate melt in the metamorphic core of the Himalaya, and outline the microstructural criteria used to distinguish peritectic K-feldspar from K-feldspar grains formed during melt crystallization. We have characterized four stages of microstructural evolution in selected psammitic and pelitic samples from the Langtang and Everest regions: (a) K-feldspar nucleates epitaxially on plagioclase while intergrowths of fibrolitic sillimanite and the remaining hydrous melt components replace muscovite. (b) In quartzofeldspathic domains, K-feldspar replaces plagioclase by K+–Na+ cation exchange, while melt and intergrowths of sillimanite+quartz form in the aluminous domains. (c) At 7–8 vol.% melt generation, the system evolves from a closed to open system and all phases coarsen by up to two orders of magnitude, resulting in large K-feldspar porphyroblasts. (d) Preferential crystallization of residual melt on K-feldspar porphyroblasts and coarsened quartz forms an augen gneiss texture with a monzogranitic-tonalitic matrix that contains intergrowths of sillimanite+tourmaline+muscovite+apatite. Initial poikiloblasts of peritectic K-feldspar trap fine-grained inclusions of quartz and biotite by replacement growth of matrix plagioclase. During subsequent coarsening, peritectic K-feldspar grains overgrow and trap fabric-aligned biotite, resulting in a core to rim coarsening of inclusion size. These microstructural criteria enable a mass balance of peritectic K-feldspar and sillimanite to constrain the amount of free H2O present during muscovite dehydration. The resulting modal proportion of K-feldspar in the Himalayan metamorphic core requires vapour-absent conditions during muscovite dehydration melting and leucogranite formation, indicating that the generation of large volumes of granitic melts in orogenic belts is not necessarily contingent on an external source of fluids.  相似文献   
52.
The Sheepbed mudstone forms the base of the strata examined by the Curiosity rover in Gale Crater on Mars, and is the first bona fide mudstone known on another planet. From images and associated data, this contribution proposes a holistic interpretation of depositional regime, diagenesis and burial history. A lake basin probably received sediment pulses from alluvial fans. Bed cross‐sections show millimetre to centimetre‐scale layering due to distal pulses of fluvial sediment injections (fine‐grained hyperpycnites), fall‐out from river plumes, and some aeolian supply. Diagenetic features include mineralized synaeresis cracks and millimetre‐scale nodules, as well as stratiform cementation. Clay minerals were initially considered due to in situ alteration, but bulk rock chemistry and mineralogy suggests that sediments were derived from variably weathered source rocks that probably contained pre‐existing clay minerals. X‐ray diffraction analyses show contrasting clay mineralogy in closely spaced samples, consistent with at least partial detrital supply of clay minerals. A significant (ca 30 wt%) amorphous component is consistent with little post‐depositional alteration. Theoretical modelling of diagenetic reactions, as well as kinetic considerations, suggest that the bulk of diagenetic clay mineral formation occurred comparatively late in diagenesis. Diagenetic features (synaeresis cracks and nodules) were previously thought to reflect early diagenetic gas formation, but an alternative scenario of synaeresis crack formation via fabric collapse of flocculated clays appears more likely. The observed diagenetic features, such as solid nodules, hollow nodules, matrix cement and ‘raised ridges’ (synaeresis cracks) can be explained with progressive alteration of olivine/glass in conjunction with centrifugal and counter diffusion of reactive species. Anhydrite‐filled fractures in the Sheepbed mudstone occurred late in diagenesis when fluid pressures built up to exceed lithostatic pressure. Generating fluid overpressure by burial to facilitate hydraulic fracturing suggests a burial depth of at least 1000 m for the underlying strata that supplied these fluids.  相似文献   
53.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   
54.
Natural Hazards - We perform numerical simulations to assess how coastal tsunami hazard from submarine mass failures (SMFs) is affected by slide kinematics and rheology. Two types of two-layer SMF...  相似文献   
55.
Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool.This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Ple?ovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratiosCommon Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply.Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages.  相似文献   
56.
57.
A benthic annular flume for both laboratory and in situ deployment on intertidal mudflats is described. The flume provides a means of quantifying material flux (i.e., biodeposition of suspended particulates, sediment resuspension, nutrients, oxygen, and contaminants) across the sediment-water interface in relation to changes in current velocity and benthic community structure and/or population density of key macrofauna species. Flume experiments have investigated the impact of the infaunal bivalveMacoma balthica and the epifaunal bivalveMytilus edulis on seston and sediment flux at the sediment-water interface. The bioturbatorMacoma was found to increase the sediment resuspension and/or erodability by 4-fold, at densities similar to those recorded at the Skeffling mudflat (Humber estuary) (i.e., >1000 individuals m?2). There was a significant correlation between sediment resuspension andMacoma density (r=0.99; p<0.001), which supported previous in situ field observations indicating bioturbation byMacoma enhanced sediment erodability. Biodeposition rates (g m?2 h1) ofMytilus edulis andCerastoderma edule were quantified and related to changes in population density in a mussel bed (Cleethorpes, Humber estuary). Biodeposition rates were up to 40-times the natural sedimentation rates. At the highest mussel bed densities (i.e., 50–100% cover or >1400 mussels m?2) the physical presence of this epifaunal bivalve on the sediment surface reduced erosion by 10-fold. The shift from net biodeposition to net erosion occurred at current velocities of 20–25 cm s?1. These results demonstrate that infaunal and epifaunal bivalves can have a significant impact on seston flux or sediment deposition and on sediment resuspension or erodability in estuaries where there are extensive mudflats.  相似文献   
58.
The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change.

During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This was the result of extensive phreatomagmatic activity along 3000 km of the opening northeast Atlantic rift. These widespread, predominantly basaltic ashes are now preserved in marine sediments of the Balder Formation and its equivalents, and occur over an area extending from the Faroe Islands to Denmark and southern England. These ash-bearing sediments also contain pollen and spore floras derived from low diversity forests that grew in cooler, drier climates than were experienced either before or after these highly explosive eruptions. In addition, coeval plant macrofossil evidence from the Bighorn Basin, Wyoming, USA, also shows a comparable pattern of vegetation change. The coincidence of the ashes and cooler climate pollen and spore floras in northwest Europe identifies volcanism as the primary cause of climate cooling. Estimates show that whilst relatively few phreatomagmatic eruptive centres along the 3000 km opening rift system could readily generate 0.5–1 °C cooling, on an annual basis, only persistent or repeated volcanic phases would have been able to achieve the long-term cooling effect observed in the floral record. We propose that the cumulative effect of repeated Balder Formation eruptions initiated a biodiversity crisis in the northeast Atlantic margin forests. Only the decline of this persistent volcanic activity, and the subsequent climatic warming at the start of the Eocene Thermal Maximum allowed the growth of subtropical forests to develop across the region.  相似文献   

59.
The idea of climate has both statistical and social foundations. Both of these dimensions of climate change over time: climate, as defined by meteorological statistics, changes for both natural and anthropogenic reasons; and our expectations of future climate also change, as cultures, societies and knowledge evolves. This paper explores the interactions between these different expressions of climate change by focusing on the idea of ‘normal’ climates defined by statistics. We show how this idea came into being in meteorological circles and then review how this idea of climatic normality gets entangled with cultural and psychological processes. Using data from historical and predicted climates in the UK, we illustrate the significance of choosing different baseline ‘normals’ for retrospective and prospective interpretations of climate change. Since the choice of these statistical ‘normals’ reflects cultural, political and psychological preferences and practices as much as scientific ones, we argue that expectations of the climatic future are influenced by social as well as statistical norms. Seeing climate as co-constructed between the psycho-cultural constraints of society and the physical constraints of the material world offers a different way of thinking about the instabilities of climate and the ways we adapt to them.  相似文献   
60.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号