A set of unified formulas for prediction of the mean rate of wave overtopping at coastal structures with smooth, impermeable surfaces have been derived through the analysis of the selected CLASH datasets. The mean wave overtopping rate is expressed as the function of the significant wave height at the structural toe and the relative freeboard. The formulas are applicable for both vertical walls and inclined seawalls with smooth transition between them. The formulas are simple but cover the full range of water depth from the shoreline to deep water. The effects of the toe depth and the seabed slope on wave overtopping rate are duly incorporated in the formulas. Prediction performance of the new formulas is better than the EurOtop formulas for both vertical walls and inclined seawalls. 相似文献
An active aftershock sequence, triggered by a large mainshock, can cause major destruction to urban cities. It is important to quantify the aftershock effects in terms of nonlinear responses of realistic structural models. For this purpose, this study investigates the aftershock effects on seismic fragility of conventional wood-frame houses in south-western British Columbia, Canada, using an extensive set of real mainshock-aftershock earthquake records. For inelastic seismic demand estimation, cloud analysis and incremental dynamic analysis are considered. A series of nonlinear dynamic analyses are carried out by considering different seismic input cases and different analysis approaches. The analysis results indicate that consideration of aftershocks leads to 5–20 % increase of the median inelastic seismic demand curves when a moderate degree of structural response is induced. The findings of this investigation facilitate the extension of the existing approaches for inelastic seismic demand estimation to incorporate the aftershock effects. 相似文献
To better understand CFMIP/CMIP inter-model differences in rapid low cloud responses to CO2 increases and their associated effective radiative forcings, we examined the tropospheric adjustment of the lower tropospheric stability (LTS) in three general circulation models (GCMs): HadGEM2-A, MIROC3.2 medres, and MIROC5. MIROC3.2 medres showed a reduction in LTS over the sub-tropical ocean, in contrast to the other two models. This reduction was consistent with a temperature decrease in the mid-troposphere. The temperature decrease was mainly driven by instantaneous radiative forcing (RF) caused by an increase in CO2. Reductions in radiative and latent heating, due to clouds, and in adiabatic and advective heating, also contribute to the temperature decrease. The instantaneous RF in the mid-troposphere in MIROC3.2 medres is inconsistent with the results of line-by-line (LBL) calculations, and thus it is considered questionable. These results illustrate the importance of evaluating the vertical profile of instantaneous RF with LBL calculations; improved future model performance in this regard should help to increase our confidence in the tropospheric adjustment in GCMs. 相似文献
Summary. A class of elastic transition zones are modelled by considering a homogeneous half space overlying an inhomogeneous half space with a bounded and monotonically increasing profile for the rigidity modulus and constant Poisson's ratio and density. Reflected P waves due to a compressional point source in the upper half space are studied in the frequency and time domains by means of numerical contour integration in the complex k plane and the Fast Fourier Transform (FFT). Results from the exact fourth-order elasticity theory are compared with those from the approximate decoupled equations for P and SV waves. Agreement is observed between the two theories at high frequencies beyond the caustic range. 相似文献
The three-dimensional morphology and direction of propagation of coronal mass ejections (CMEs) are essential information for identifying their source on the solar disk, for understanding the processes of their ejection and propagation in the corona, and for forecasting their possible impact with the Earth or any other objects in the solar system. The polarization of the Thomson scattering by an electron is known to provide information on its position with respect to the plane of the sky. This polarimetric technique is applied to reconstruct 15 CMEs on the basis of white-light polarized images obtained with the Large Angle Spectrometric Coronagraph (LASCO) C2, which have been extensively corrected for instrumental effects. It does provide valuable results in spite of the time delays between the three observations required to build the polarization maps. Most of these CMEs exhibit complex structures making a classification in terms of simple shapes such as arcade of loops or flux rope difficult or even questionable. Three of these CMEs benefited from multiple observations allowing us to follow their three-dimensional development as they propagated outward. All CMEs are tracked back to the solar surface and in several instances, active regions are identified as the probable sources. Finally, the projected speeds and masses derived from white-light unpolarized observations have been corrected for the projection angle to produce unbiased values.
Direct measurements using a free-falling micro-profiler were conducted on the northeast coast of Hokkaido in the summer of 2007 to clarify the mixing process in the Soya Warm Current (SWC) region in terms of microstructure. The distribution of the Turner angle (Tu) showed that these regions have a high potential for double diffusive convection, but direct measurements of the turbulent dissipation rate (ε) and dissipation of temperature variance ($ \chi_{T} $) did not necessarily correspond to each other in the SWC region, especially in the offshore front of SWC and farther offshore. The mixing efficiency indicated that, even though the Turner angle (Tu) indicated a high potential for double diffusive convection, turbulent mixing was the main contributor to the mixing process in this region, and double-diffusive convection only contributed partially and sparsely, especially in the boundary off SWC water. The bottom mixed layer (BML) is known to thicken off the SWC. The vertical diffusivity coefficient was enhanced near the bottom (10?4–10?3 m2 s?1) off the SWC, and these results support that turbulence near the bottom off the SWC contributed to the thickening of the BML. 相似文献