首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   11篇
  国内免费   3篇
大气科学   9篇
地球物理   46篇
地质学   25篇
海洋学   53篇
天文学   10篇
综合类   6篇
自然地理   3篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2014年   5篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   10篇
  2008年   10篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   13篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1972年   1篇
排序方式: 共有152条查询结果,搜索用时 531 毫秒
81.
We describe an orthopyroxene–cordierite mafic gneiss from the Nomamisaki metamorphic rocks in the Noma Peninsula, southern Kyushu, Japan. The mineral assemblage of the gneiss is orthopyroxene, cordierite, biotite, plagioclase, and ilmenite. Thermometry based on the Fe–Mg exchange reaction between orthopyroxene and biotite yields a peak metamorphic temperature of 680°C. The stability of cordierite relative to garnet, quartz, and sillimanite defines the upper limit of the peak metamorphic pressure as 4.4 kbar. These features indicate that the Nomamisaki metamorphic rocks underwent low‐pressure high‐temperature type metamorphism. Although a chronological problem still remains, the Nomamisaki metamorphic rocks can be regarded as a western continuation of the Higo Belt. The Usuki–Yatsushiro Tectonic Line, which delineates the southern border of the Higo Belt, is therefore located on the east of the Nomamisaki metamorphic rocks in southern Kyushu.  相似文献   
82.
This paper verifies the feasibility of the proposed system identification methods by utilizing shaking table tests of a full‐scale four‐story steel building at E‐Defense in Japan. The natural frequencies, damping ratios and modal shapes are evaluated by single‐input‐four‐output ARX models. These modal parameters are prepared to identify the mass, damping and stiffness matrices when the objective structure is modelled as a four degrees of freedom (4DOF) linear shear building in each horizontal direction. The nonlinearity in stiffness is expressed as a Bouc–Wen hysteretic system when it is modelled as a 4DOF nonlinear shear building. The identified hysteretic curves of all stories are compared to the corresponding experimental results. The simple damage detection is implemented using single‐input‐single‐output ARX models, which require only two measurements in each horizontal direction. The modal parameters are equivalent‐linearly evaluated by the recursive Least Squares Method with a forgetting factor. When the structure is damaged, its natural frequencies decrease, and the corresponding damping ratios increase. The fluctuation of the identified modal properties is the indirect information for damage detection of the structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
83.
This study presents new major and trace element, mineral, and Sr, Nd, and noble gas isotope geochemical analyses of basalts, gabbro, and clinopyroxenite from the Mariana Arc (Central Islands and Southern Seamount provinces) including the forearc, and the Mariana Trough (Central Graben and Spreading Ridge). Mantle source compositions beneath the Mariana Arc and the Mariana Trough indicate a mantle source that is depleted in high field strength elements relative to MORB (mid‐oceanic ridge basalt). Samples from the Mariana Arc, characterized by high ratios of Ba/Th, U/Th, 84Kr/4He and 132Xe/4He, are explained by addition of fluid from the subducted slab to the mantle wedge. Correlations of noble gas data, as well as large ion lithophile elements, indicate that heavy noble gases (Ar, Kr, and Xe) provide evidence for fluid fluxing into the mantle wedge. On the other hand, major elements and Sr, Nd, He, and Ne isotopic data of basalts from the Mariana Trough are geochemically indistinguishable from MORB. Correlations of 3He/4He and 40Ar/36Ar in the Mariana Trough samples are explained by mixing between MORB and atmosphere. One sample from the Central Graben indicates extreme enrichment in 20Ne/22Ne and 21Ne/22Ne, suggesting incorporation of solar‐type Ne in the magma source. Excess 129Xe is also observed in this sample suggesting primordial noble gases in the mantle source. The Mariana Trough basalts indicate that both fluid and sediment components contributed to the basalts, with slab‐derived fluids dominating beneath the Spreading Ridge, and that sediment melts, characterized by high La/Sm and relatively low U/Th and Zr/Nb, dominate in the source region of basalts from the Central Graben.  相似文献   
84.
This study proposes a new design method for an active mass damper (AMD) that is based on auto‐regressive exogenous models of a building structure. The proposed method uses the results of system identification in the field of active structural control. The uncontrolled structure is identified as auto‐regressive exogenous models via measurements under earthquake excitation and forced vibration. These models are linked with an equation of motion for the AMD to introduce a state equation and output equation for the AMD–structure interaction system in the discrete‐time space; the equations apply modern control theories to the AMD design. In the numerical applications of a 10‐degree‐of‐freedom building structure, linear quadratic regulator control is used to understand the fundamental characteristics of the proposed design procedure. The feedback control law requires the AMD's acceleration, velocity and stroke; the structure's acceleration; and the ground acceleration as vibration measurements. The numerical examples confirm the high applicability and control effectiveness of the proposed method. One remarkable advantage of the proposed method is that an equation of motion for the structure becomes unnecessary for designing controllers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
85.
Uptake and biological effects of synthetic glucocorticoids (GCs) were analyzed using common carp (Cyprinus carpio). Fish were exposed to clobetasol propionate (CP) or clobetasone butyrate (CB) individually or in mixture at 1 μg L−1 for 21 days. Bioconcentration factor (BCF) of CB was calculated as 100, and BCF of CP was less than 16. No effects were found in fish erythrocyte and leukocyte numbers and serum glucose levels after exposure to the selected GCs. On the other hand, serum concentrations of free amino acids significantly increased in GC-exposed groups. Thus, exposures to synthetic GCs at relatively low concentrations seemed to cause enhancement of protein degradation and subsequent increase of serum free amino acids without a corresponding increase in serum glucose levels, an effect which might be related to partial induction of gluconeogenesis by GC.  相似文献   
86.
In situ stress measurements in a borehole close to the Nojima Fault   总被引:1,自引:0,他引:1  
Abstract In situ stress was measured close to the fault associated with the 1995 Kobe Earthquake (Hyogo-ken Nanbu earthquake; January 1995; M 7.2) using the hydraulic fracturing method. The measurements were made approximately 2 years after the earthquake. The measured points were approximately 40 m from the fault plane at depths of about 1500 m. The maximum and the minimum horizontal compressive stresses were 45 MPa and 31 MPa, respectively. The maximum compressive stress and the maximum shear stress are very small in comparison with those of other seismically active areas. The azimuth of the maximum horizontal compressive stress was estimated from the observed azimuths of well bore breakouts at depths between 1400 m and 1600 m and was found to be N135° (clockwise). The maximum stress axis is perpendicular to the fault strike, N45°. These features are interpreted in terms of a small frictional coefficient of the fault. The shear stress on the fault was released and dropped almost to zero during the earthquake and it has not yet recovered. Zero shear stress on the fault plane resulted from the perpendicular orientation of one of the principal stress to the fault plane.  相似文献   
87.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   
88.
89.
90.
小江断裂带第四纪晚期左旋走滑速率及其构造意义   总被引:6,自引:2,他引:6       下载免费PDF全文
位于中国西南的小江 (Xiaojiang)断裂带作为康定 (Kangding)断裂带的南段 ,在青藏块体向SE方向挤出的过程中起着重要的作用。根据断错地貌以及这些断错地貌14 C年代或热释光年代 ,推算了小江断裂带第四纪晚期的左旋走滑速率。小江断裂带可以分为 3段 ,其中段由平行的两条断层组成。西支断层和东支断层的左旋走滑速率分别为 7.0~ 9.0mm/ yr和 6 .0~ 7.5mm/yr。简单相加 ,就可以推算出小江 (Xiaojiang)断裂带总的左旋走滑速率为 13 0~ 16 5mm/ yr,与康定断裂带北段的鲜水河 (Xianshuihe)断层的走滑速率大致相当 ,约等于康定 (Kangding)断裂带中段的安宁河 (Anninghe)断层及则木河 (Zemuhe)断层的两倍。这个结果可能暗示了在康定断裂带中段 ,可能存在着其他断层以解消另外一半的滑动速率。最有可能的断层是位于康定断裂带中段以东几十公里的普雄河 -布拖 (Puxionghe Butuo)断层  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号