首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   14篇
  国内免费   4篇
测绘学   3篇
大气科学   36篇
地球物理   59篇
地质学   84篇
海洋学   19篇
天文学   35篇
自然地理   24篇
  2022年   3篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   13篇
  2017年   11篇
  2016年   16篇
  2015年   8篇
  2014年   16篇
  2013年   19篇
  2012年   21篇
  2011年   13篇
  2010年   12篇
  2009年   14篇
  2008年   9篇
  2007年   14篇
  2006年   11篇
  2005年   10篇
  2004年   9篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1972年   1篇
排序方式: 共有260条查询结果,搜索用时 0 毫秒
11.
Priabonian age is highlighted for the first time in Corsica in the Venaco Formation using the presence of specific microfauna (in particular some representatives of Turborotalia cerroazulensis lineage). This silicoclastic formation is mainly represented by coarse facies. It is composed of three members from south to north and from oldest towards youngest: member of Uboli, Cardo and Orsu. The sedimentologic analysis reveals a gravity depositional environment, involving different type of currents. Sedimentologic and chronologic characteristics make the Venaco Formation and the Annot Formation (p.p.) equivalent. Dating the Venaco Fm. brings confirmation that the green schist metamorphism of the Variscan batholith and the related deformation are from the pre-Priabonian period.  相似文献   
12.
13.
Uranium(VI) sorption onto kaolinite was investigated as a function of pH (3–12), sorbate/sorbent ratio (1 × 10?6–1 × 10?4 M U(VI) with 2 g/L kaolinite), ionic strength (0.001–0.1 M NaNO3), and pCO2 (0–5%) in the presence or absence of 1 × 10?2–1 × 10?4 M citric acid, 1 × 10?2–1 × 10?4 M EDTA, and 10 or 20 mg/L fulvic acid. Control experiments without-solids, containing 1 × 10?6–1 × 10?4 M U(VI) in 0.01 M NaNO3 were used to evaluate sorption to the container wall and precipitation of U phases as a function of pH. Control experiments demonstrate significant loss (up to 100%) of U from solution. Although some loss, particularly in 1 × 10?5 and 1 × 10?4 M U experiments, is expected due to precipitation of schoepite, adsorption on the container walls is significant, particularly in 1 × 10?6 M U experiments. In the absence of ligands, U(VI) sorption on kaolinite increases from pH ~3 to 7 and decreases from pH ~7.5 to 12. Increasing ionic strength from 0.001 to 0.1 M produces only a slight decrease in U(VI) sorption at pH < 7, whereas 10% pCO2 greatly diminishes U(VI) sorption between pH ~5.5 and 11. Addition of fulvic acid produces a small increase in U(VI) sorption at pH < 5; in contrast, between pH 5 and 10 fulvic acid, citric acid, and EDTA all decrease U(VI) sorption. This suggests that fulvic acid enhances U(VI) sorption slightly via formation of ternary ligand bridges at low pH, whereas EDTA and citric acid do not form ternary surface complexes with the U(VI), and that all three ligands, as well as carbonate, form aqueous uranyl complexes that keep U(VI) in solution at higher pH.  相似文献   
14.
Previous interdisciplinary paleoenvironmental and archaeological research along the Río Verde Valley of Oaxaca, Mexico, showed that Holocene erosion in the highland valleys of the upper drainage basin triggered geomorphic changes in the river's coastal floodplain. This article uses stratigraphic data from sediment cores extracted from Laguna Pastoría, an estuary in the lower Río Verde Valley, to examine changes in coastal geomorphology potentially triggered by highland erosion. Coastal lagoon sediments contain a stratigraphically and chronologically distinct record of major hurricane strikes during late Holocene times. Three distinct storm facies are identified from sediment cores obtained from Laguna Pastoría, which indicate that profound coastal environmental changes occurred within the region and are correlated with increased sediment supplied from highland erosion. The Chione/Laevicardium facies was deposited in an open bay while the Mytella/barnacle facies and sand facies were deposited in an enclosed lagoon following bay barrier formation. We argue that highland erosion triggered major geomorphic changes in the lowlands including bay barrier formation by 2500 cal yr B.P. These environmental changes may have had significant effects on human populations in the region. The lagoon stratigraphy further indicates an increase in mid–late Holocene hurricane activity, possibly caused by increased El Niño frequencies.  相似文献   
15.
The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7?ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895?°C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71?ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7?ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500?ppm), decreased (to ~200?ppm), and then increased again with the climactic eruption (~500?ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240?ppm in early-erupted deposits (71?ka) and are below detection in climactic deposits (7.7?ka). Combined H2O and CO2 concentrations and solubility models indicate a dominant storage region at 4–7?km (up to 12?km), with drier inclusions that diffusively re-equilibrated and/or were trapped at shallower depths. Boron and Cl (except in the climactic deposit) largely remained in the melt, suggesting vapor–melt partition coefficients and gas fractions were low. Modeled Li, F, and S vapor–melt partition coefficients are higher than those of B and Cl. The decrease in maximum MI CO2 concentration following the earliest dacitic eruptions is interpreted to result from a broadening of the shallow storage region to greater than the diameter of subjacent feeders, so that greater proportions of reservoir magma were to the side of CO2-bearing vapor bubbles ascending vertically from the locus of recharge magma injection, thereby escaping recarbonation by streaming vapor bubbles. The Mazama melt inclusions provide a picture of a growing magma storage region, where chemical variations in melt and magma occur due to changes in the nature and supply rate of magma recharge, the timing of degassing, and the possible degree of equilibration with gases from below.  相似文献   
16.
Pluvial lake deposits are found throughout western North America and are frequently used to reconstruct regional paleoclimate. In Death Valley, California, USA, we apply the beach particle technique (BPT) of Adams (2003), Sedimentology, 50, 565–577 and Adams (2004), Sedimentology, 51, 671–673 to Lake Manly deposits at the Beatty Junction Bar Complex (BJBC), Desolation Canyon, and Manly Terraces and calculate paleowind velocities of 14–27 m/s. These wind velocities are within the range of present-day wind velocities recorded in the surrounding area. Sedimentary structures and clast provenance at Desolation Canyon and the Manly Terraces indicate sediment transport from north to south. Lake level, based on the elevation of constructional features, indicates that the hill west of the BJBC was an island and that the BJBC spits formed during simple lake regression. The data are consistent with the hypothesis that the present wind regime (velocity and direction) formed the pluvial Lake Manly features.  相似文献   
17.
The initiation and growth of boreal peatlands developed on well‐drained, sandy landforms are closely associated with podzolic soil paludification processes. The origin of Sphagnum bogs extending on large deltaic plains was examined to test the hypothesis of the dual impact of indurated (ortstein) podzols and fire on forest soil paludification and concurrent peatland initiation and expansion. Mineral soil, basal organic matter and peat monoliths were sampled for soil and macrofossil analyses along an 800‐m toposequence starting from a mixed‐wood boreal forest to a Sphagnum bog (Lebel bog, eastern Quebec, Canada), and ending at a peat dome in the thickest section of the peatland. Mineral soils along the toposequence are ortstein humo‐ferric podzols distributed in the forest environment and beneath Sphagnum peat in the bog, except at the peat dome. Initial peatland growth occurred c. 6000 cal. a BP. Soil paludification coincided with the cessation of fire occurrence as recorded in the organic and mineral layers preceding Sphagnum expansion. Unlike most temperate and boreal raised bogs, the Sphagnum bog developed directly from a forest environment without passing through a transitional fen stage. Conifer forests regenerated successively after several fires between 4200 and 1600 cal. a BP before bog expansion. Pre‐bog forests were composed of fire‐prone black spruce (Picea mariana) and jack pine (Pinus banksiana) trees, and ericaceous species. Given the distribution and thickness of ortstein horizons progressively decreasing and disappearing towards the peatland dome, growth and expansion of the Sphagnum bog was not caused by soil induration processes, which could have potentially impeded vertical and horizontal drainage. The development of indurated podzols outside and several hundred metres inside the peatland preceded the initiation and expansion of the Sphagnum bog. Cessation of fire activity appears to be a key factor facilitating the lateral expansion of the Sphagnum bog under wet soil conditions.  相似文献   
18.
The Deepwater Horizon oil spill was the largest marine oil spill in US waters to date and one of the largest worldwide. Impacts of this spill on salt marsh vegetation have been well documented, although impacts on marsh macroinvertebrates have received less attention. To examine impacts of the oil spill on an important marsh invertebrate and ecosystem engineer, we conducted a meta-analysis on fiddler crabs (Uca spp.) using published sources and newly available Natural Resources Damage Assessment (NRDA) and Gulf of Mexico Research Initiative (GoMRI) data. Fiddler crabs influence marsh ecosystem structure and function through their burrowing and feeding activities and are key prey for a number of marsh and estuarine predators. We tested the hypothesis that the spill affected fiddler crab burrow density (crab abundance), burrow diameter (crab size), and crab species composition. Averaged across multiple studies, sites, and years, our synthesis revealed a negative effect of oiling on all three metrics. Burrow densities were reduced by 39 % in oiled sites, with impacts and incomplete recovery observed over 2010–2014. Burrow diameters were reduced from 2010 to 2011, but appeared to have recovered by 2012. Fiddler crab species composition was altered through at least 2013 and only returned to reference conditions where marsh vegetation recovered, via restoration planting in one case. Given the spatial and temporal extent of data analyzed, this synthesis provides compelling evidence that the Deepwater Horizon spill suppressed populations of fiddler crabs in oiled marshes, likely affecting other ecosystem attributes, including marsh productivity, marsh soil characteristics, and associated predators.  相似文献   
19.
Coastal habitat use and residency of a coastal bay by juvenile Atlantic sharpnose sharks, Rhizoprionodon terraenovae, were examined by acoustic monitoring, gillnet sampling, and conventional tag–recapture. Acoustic monitoring data were used to define the residency and movement patterns of sharks within Crooked Island Sound, Florida. Over 3 years, sharks were monitored for periods of 1–37 days, with individuals regularly moving in and out of the study site. Individual sharks were continuously present within the study site for periods of 1–35 days. Patterns of movement could not be correlated with time of day. Home range sizes were typically small (average?=?1.29 km2) and did not vary on a yearly basis. Gillnet sampling revealed that juvenile Atlantic sharpnose sharks were present in all habitat types found within Crooked Island Sound, and peaks in abundance varied depending on month within a year. Although telemetry data showed that most individuals remained within the study site for short periods of time before emigrating, conventional tag–recapture data indicates some individuals return to Crooked Island Sound after extended absences (maximum length?=?1,352 days). Although conventional shark nursery theory suggests small sharks remain in shallow coastal waters to avoid predation, juvenile Atlantic sharpnose sharks frequently exited from protected areas and appear to move through deeper waters to adjacent coastal bays and estuaries. Given the high productivity exhibited by this species, the benefit gained through a nursery that reduces predation may be limited for this species.  相似文献   
20.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号