首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
地球物理   24篇
地质学   43篇
海洋学   5篇
天文学   5篇
综合类   1篇
自然地理   11篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   7篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   8篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1967年   1篇
排序方式: 共有89条查询结果,搜索用时 125 毫秒
51.
The eastern border of the Middle Valley of the Tiber River is characterized by several Plio-Pleistocene paleoshorelines, which extend for about 100 km along the western margin of the Central Apennines (Italy). We studied these paleoshorelines by the means of geological and paleontological analyses and new 87Sr/86Sr isotope analyses. The youngest and uppermost paleoshorelines have been detected and mapped through detailed geologic and stratigraphic surveys, which led to the recognition of nearshore deposits, cliff breccias, alignments of Lithophaga borings, fossil abrasion notches and wave-cut platforms. The altitude of these paleoshorelines decreases almost regularly in the NNW–SSE direction from 480 to 220 m a.s.l. Measurements of the 87Sr/86Sr isotope ratio have been conducted on corals and mollusks collected from sediments outcropping close to the paleoshorelines. The isotopic dating results indicate numerical values that range between 0.70907 and 0.70910 all over the 100-km outcrop. These results, together with biostratigraphic data, constrain the age of the youngest paleoshorelines to 1.65–1.50 Ma. These paleoshorelines are thus considered almost isochronous, giving an estimated uplift rate of 0.34–0.17 ± 0.03 mm/a moving from NNW to SSE. Shape, length and continuity of the 100-km-long observed movements indicate that the studied paleoshorelines are an important marker of the Quaternary uplift of the Central Apennines.  相似文献   
52.
Similar lithological and tectonic features indicate that Timor and Sulawesi islands were part of the same continental block. Timor was in the southern part of Sulawesi, then separated during Late Miocene time during the opening of the South Banda Sea basin. At this time Timor evolved as a part of an Upper Miocene volcanic arc that collided the Australian plate at the end of the Lower Pliocene (3.5 Ma). To cite this article: M. Villeneuve et al., C. R. Geoscience 336 (2004).  相似文献   
53.
The hydrogeochemistry of saline-meteoric water interface zones in sedimentary basins is important in constraining the fluid migration history, chemical evolution of basinal brines, and physical stability of saline formation waters during episodes of freshwater recharge. This is especially germane for interior cratonic basins, such as the Michigan and Illinois basins. Although there are large differences in formation water salinity and hydrostratigraphy in these basins, both are relatively quiescent tectonically and have experienced repeated cycles of glaciation during the Pleistocene. Exploration for unconventional microbial gas deposits, which began in the upper Devonian-age Antrim Shale at the northern margin of the Michigan Basin, has recently extended into the age-equivalent New Albany Shale of the neighboring Illinois Basin, providing access to heretofore unavailable fluid samples. These reveal an extensive regional recharge system that has profoundly changed the salinity structure and induced significant biogeochemical modification of formation water elemental and isotope geochemistry.New-formation water and gas samples were obtained from Devonian-Mississippian strata in the Illinois Basin. These included exploration wells in the New Albany Shale, an organic-rich black shale of upper Devonian age, and formation waters from over- and underlying regional aquifer systems (Siluro-Devonian and Mississippian age). The hydrostratigraphic relations of major aquifers and aquitards along the eastern margin of the Illinois Basin critically influenced fluid migration into the New Albany Shale. The New Albany Shale formation water chemistry indicates significant invasion of meteoric water, with δD values as low as −46.05‰, into the shale. The carbon stable isotope system (δ13C values as high as 29.4‰), coupled with δ18O, δD, and alkalinity of formation waters (alkalinity ≤24.08 meq/kg), identifies the presence of microbial gas associated with meteoric recharge. Regional geochemical patterns identify the underlying Siluro-Devonian carbonate aquifer system as the major conduit for freshwater recharge into the fractured New Albany Shale reservoirs. Recharge from overlying Mississippian carbonates is only significant in the southernmost portion of the basin margin where carbonates directly overlie the New Albany Shale.Recharge of dilute waters (Cl <1000 mM) into the Siluro-Devonian section has suppressed formation water salinity to depths as great as 1 km across the entire eastern Illinois Basin margin. Taken together with salinity and stable isotope patterns in age-equivalent Michigan Basin formation waters, they suggest a regional impact of recharge of δ18O- and δD-depleted fluids related to Pleistocene glaciation. Devonian black shales at both basin margins have been affected by recharge and produced significant volumes of microbial methane. This recharge is also manifested in different salinity gradients in the two basins because of their large differences in original formation water salinity. Given the relatively quiet tectonic history and subdued current topography in the midcontinent region, it is likely that repeated cycles of glacial meltwater invasion across this region have induced a strong disequilibrium pattern in fluid salinity and produced a unique class of unconventional shale-hosted gas deposits.  相似文献   
54.
Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumulation of sands and clay. This research indicates the GPR is a non-intrusive, rapid, and economical method for high-resolution profiling of subsurface sediments in sandy gravelly coast.  相似文献   
55.
A systematic geochemical investigation on the thermal manifestations of the volcanic area of Phlegrean Fields started in 1980, with the aim of obtaining useful information about the changes possibly occurring at the same time of vertical ground movements, termed as “bradyseismic”, which frequently interested this area.The attention was initially given to the fumaroles and the boiling pools of Solfatara and Pisciarelli, then subsequently extended to thermal springs, dug wells, and crater lakes.Analytical data pertaining to a period preceding the last crisis of 1982–1984 were then available, as well as other data collected during the previous crisis of 1970; a comprehensive picture of the variations observed before, during and after the acceleration of vertical movement has been drawn.According to the results obtained, the intrusion of a magmatic body as the trigger of the observed ground deformation is considered unrealistic. The whole area appears now in a quiet stage, and no further perturbation is expected without previous significant tectonic activity; chemical precursors appear suitable for an early detection of changes occurring at depth, to forecast possible consequences to be expected in the surface environment.  相似文献   
56.
Physical, chemical and isotopic parameters were measured in fumaroles at the Vulcano crater and in drowned fumaroles near the beach. The data were used to define boundary conditions for possible conceptual models of the system.Crater fumaroles: time variations of CO2 and SO2 concentrations indicate mixing of saline gas-rich water with local fresh water. Cl/Br ratios of 300– 400 favour sea-water as a major source for Cl, Brand part of the water in the fumaroles. Cl concentrations and D values revealed, independently, amixing of 0.75 sea-water with 0.25 local freshwaterin furmarole F-5 during September 1982.Patterns of parameter correlation and mass balances reveal that CO2, S, NH3 and B originate from sources other than sea water. The CO2 value of 13C = – 2%o favours, at least partial, origin from decomposition of sedimentary rocks rather than mantle-derived material. Radiogenic4He(1.3 × lO–3 ccSTP/g water) and radiogenic40Ar(10.6 × 10–4 ccSTP/g water) are observed, (4He/40Ar)radiogenic = 1.2, well in the range of values observed in geothermal systems.Drowned fumaroles: strongly bubbling gas at a pond and at the beachappears to have the same origin and initial compositionas the crater fumaroles (2 km away). The fumarolic gas is modified by depletion of the reactive gases, caused by dissolution in shallow-water. Atmospheric Ne, Ar, Kr and Xe are addeden route, some radiogenic He and Ar are maintained. The Vulcano system seems to be strongly influenced by the contribution of sea-water and decomposition of sedimentary rocks. Evidence of magmatic contributions is mainly derived from heat.  相似文献   
57.
Analytical data for samples collected over a period of 17 months at the crater fumaroles of Vulcano are given. Fluids are both condensed and absorbed in KOH solutions, thus providing a complete analysis of acid and condensable species. Variations in H2O, CO2, SO2, H2S, HCl, B, F, Br, NH4 concentrations are taken into account. Rainwater represents an important modifying facor of the basic chemical composition of the investigated discharges, which do not seem to have undergone any other significant change during the above mentioned span of time. While acting essentially as a diluting factor for CO2 and SO2, the inflow of meteoric water can introduce substantial modifications in concentrations of other constituents. As a consequence, any correct comparison of fumaroles compositions either for different systems or for different samplings at the same system should take into consideration the influence of meteorological conditions.  相似文献   
58.
Fluorine and chlorine have been determined in samples of lavas and pyroclastic products from the islands of Lipari and Vulcano, which form the southernmost portion of the Aeolian arc, because their present distribution may provide additional information for a better understanding of the differentiation and eruptive mechanisms affecting these volcanoes. On the basis of previous data which did not reveal a significant presence of Cl- and F-bearing minerals, these two elements are expected to concentrate in the residual melt during differentiation, following a distribution pattern similar to that of lithium that is a typical residual constituent. The analytical results are in good agreement with the hypothesis which attributes a positive role to potassium in the solubility of volatiles in the melt phase, while silica would favour their escaping in a gaseous form. For rocks representing the last stages of differentiation a sharp increase in litium concentration is observed, and the relative loss of fluorine and chlorine is attributed to their releasing as constituents of fumarolic fumes. If the system is to a certain extent sealed, a « normal » passive enrichment for all the considered elements may occur.  相似文献   
59.
A systematic geochemical surveillance on the fumaroles of Solfatara and the boiling pools of Pisciarelli was carried out by discontinuous monitoring of the chemical composition of the emitted fluids during the Phlegraean Fields bradyseismic crisis which has begun in 1982. The fluids are considered to be produced by the ebullition of shallow aquifers receiving a convective gaseous inflow from the underlying magma chamber.Increased water vapor concentrations at a constant temperature of about 155 °C throughout the investigated period, along with the occurrence of ground deformations and seismic phenomena, are interpreted as resulting from an increased heat supply to the boiling water bodies.Dissolution processes and reactions with the confining rocks can alter the chemical composition of fluids escaping from magma to a large extent. Therefore it does not appear correct to consider the absolute values of any chemical constituent for geochemical surveillance without taking this modifying factor into account. Acid gases will be preferably absorbed by the above mentioned aquifers, while other species like H2, N2, O2, CH4, will instead increase their relative concentrations. Because of this, water vapour concentrations and the ratios H2S/CO2 and H2/CH4 in surface thermal manifestations appear to reflect better the varying extent of the observed phenomenon.On the basis of these parameters, and of both the upheaval rate and the intensity of seismic events, maximum values in the convective input of magmatic origin are estimated to have occurred at the beginning of the crisis and in September–October 1983.As long as water bodies at shallow depth are able to buffer the convective flow both thermally and chemically, no important volcanic activity can develop. When the absorbing capacity of these aquifers is exhausted, the increasing temperature and the changing characteristics of fluids towards a magmatic composition will indicate a higher probability of eruptive phenomena.CNR —Centro di studio per la mineralogia e la geochimica dei sedimenti.  相似文献   
60.
Volatile compunds play a very important role in both the evolution of magmas and the eruptive processes. Despite great interest in the knowledge of volatile distribution in magma chambers prior to eruptions, direct evidence of this kind is very difficult to obtain because a major quantity of gaseous species is released to the atmosphere during volcanic phenomena.Good estimates of volatile contents in magmas have been obtained by their distribution in coexisting mineral phases and microprobe analysis of glass inclusions; however, a sufficient set of data is not yet available to provide direct evidence of volatile concentrations in magma chambers before eruptive processes.Owing to their volatility, water, hydrogen, carbon dioxide, sulphur and chlorine compounds are largely concentrated in the explosive cloud. On the other hand, molecular species of fluorine, which are more soluble than water in magmatic melts, strongly partition into this latter phase rather than into the fluid. As a consequence, fluorine compounds are normally present in small concentrations in fumarolic gases and are not expected to degas appreciably from quenched volcanic products.With reference to the influence of weathering processes, recent research has shown that unaltered volcanic glasses have lost but a minor quantity of fluorine as a result of secondary reactions. Because of this, analytical data for fluorine in fresh igneous rocks would not differ significantly from the actual values pertaining to the magmatic stage.The distribution of fluorine in samples from Italy (Vesuvius, Vulcano, Lipari, Roccamonfina, Phlegraean Fields) and Greece (Santorini) appears to be correlated with the concentration of potassium, which is in accordance with theoretical assumptions and analytical results in other areas.According to experimental data, the presence of fluorine in magmas of silicate composition considerably enhances the solubility of water.Higher concentrations of water would mean a higher potential explosivity, and the possibility that the observed concentrations of fluorine can serve as a measure of different degrees of stored energy is considered.Contribution of C.N.R. Centro di Studio per la Mineralogia e la Geochimica dei Sedimenti.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号