首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1320篇
  免费   43篇
  国内免费   14篇
测绘学   31篇
大气科学   101篇
地球物理   333篇
地质学   571篇
海洋学   110篇
天文学   134篇
综合类   5篇
自然地理   92篇
  2021年   10篇
  2020年   9篇
  2019年   8篇
  2018年   26篇
  2017年   29篇
  2016年   46篇
  2015年   29篇
  2014年   33篇
  2013年   79篇
  2012年   49篇
  2011年   71篇
  2010年   75篇
  2009年   79篇
  2008年   62篇
  2007年   62篇
  2006年   57篇
  2005年   82篇
  2004年   61篇
  2003年   43篇
  2002年   44篇
  2001年   35篇
  2000年   24篇
  1999年   28篇
  1998年   22篇
  1997年   10篇
  1996年   20篇
  1995年   16篇
  1994年   16篇
  1993年   9篇
  1992年   18篇
  1991年   11篇
  1990年   15篇
  1989年   9篇
  1988年   10篇
  1987年   10篇
  1986年   17篇
  1985年   16篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   15篇
  1980年   8篇
  1979年   11篇
  1978年   8篇
  1977年   10篇
  1976年   11篇
  1975年   4篇
  1974年   13篇
  1973年   4篇
  1953年   2篇
排序方式: 共有1377条查询结果,搜索用时 578 毫秒
21.
Many real world applications today are built on analyses of movement and related features. Examples of such applications include transportation management, urban planning, tourism services, and animal migration monitoring, among others. Recent database modeling and management research prototypes have the capability to store and manipulate movement data in terms of point or region geometries that evolve over time (moving point or moving and deforming region). This captures the spatio‐temporal trace left by a moving object, but ignores its links with non‐geometric information that enable a semantic interpretation of the movement of moving objects. The concept of trajectory has been introduced to express a more semantic understanding of movement, taking it closer to the perception of applications. This article describes a framework for a semantics‐oriented structuring, modeling and querying of trajectory data. The framework relies on the definition of trajectory‐related ontologies, addressing domain‐independent and application‐specific geometric and semantic facets. Last we briefly discuss how the proposed approach has been applied for a traffic management application.  相似文献   
22.
In the mid-fifteenth century, one of the largest eruptions of the last 10 000 years occurred in the Central New Hebrides arc, forming the Kuwae caldera (12x6 km). This eruption followed a late maar phase in the pre-caldera edifice, responsible for a series of alternating hydromagmatic deposits and airfall lapilli layers. Tuffs related to caldera formation ( 120 m of deposits on a composite section from the caldera wall) were emitted during two main ignimbritic phases associated with two additional hydromagmatic episodes. The lower hydromagmatic tuffs from the precaldera maar phase are mainly basaltic andesite in composition, but clasts show compositions ranging from 48 to 60% SiO2. The unwelded and welded ashflow deposits from the ignimbritic phases and the associated intermediate and upper hydromagmatic deposits also show a wide compositional range (60–73% SiO2), but are dominantly dacitic. This broad compositional range is thought to be due to crystal fractionation. The striking evolution from one eruptive style (hydromagmatic) to the other (magmatic with emission of a large volume of ignimbrites) which occurred either over the tuff series as a whole, or at the beginning of each ignimbritic phase, is the most impressive characteristic of the caldera-forming event. This strongly suggests triggering of the main eruptive phases by magma-water interaction. A three-step model of caldera formation is presented: (1) moderate hydromagmatic (sequences HD 1–4) and magmatic (fallout deposits) activity from a central vent, probably over a period of months or years, affected an area slightly wider than the present caldera. At the end of this stage, intense seismic activity and extrusion of differentiated magma outside the caldera area occurred; (2) unhomogenized dacite was released during a hydromagmatic episode (HD 5). This was immediately followed by two major pyroclastic flows (PFD 1 and 2). The vents spread and intense magma-water interaction at the beginning of this stage decreased rapidly as magma discharge increased. Subsequent collapse of the caldera probably commenced in the southeastern sector of the caldera; (3) dacitic welded tuffs were emplaced during a second main phase (WFD 1–5). At the beginning of this phase, magma-water interaction continued, producing typical hydromagmatic deposits (HD 6). Caldera collapse extended to the northern part of the caldera. Previous C14 dates and records of explosive volcanism in ice from the south Pole show that the climactic phase of this event occurred in 1452 A.D.  相似文献   
23.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some fast-track dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.On leave from the Department of Mathematics, University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy, thanks to the G. Colombo fellowships of the European Space Agency.  相似文献   
24.
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.  相似文献   
25.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
26.
27.
A design procedure is proposed to minimize water infiltration into landfills by optimizing the water diversion length of inclined covers with capillary barrier effect (CCBE). This design procedure is based on a conceptual, mathematical and numerical approach and aims at selecting materials and optimizing layer thickness. Selection among candidate materials is made based on their hydraulic conductivity functions and on a threshold infiltration rate imposed on the designer. The capillary break layer (CBL; bottom layer) is characterized by a weak capillarity, while the moisture retention layer (MRL; upper layer) is characterized by a compromise between strong capillarity and high hydraulic conductivity. The thickness of the CBL corresponds to the height where suction reaches its maximum value for a given infiltration rate. This height can be calculated using the Kisch [Géotechnique 9 (1959)] model. The optimal thickness of the MRL is determined by applying an adaptation of the Ross [Water Resources Research 26 (1990)] model. The results obtained using the proposed design procedure were compared to those obtained from numerical simulations performed using a finite element unsaturated seepage software. The procedure was applied for two cover systems; one where deinking by-products (DBP) were used as MRL and sand as CBL and another where sand was used as MRL and gravel as CBL. Using this procedure, it has been shown that an infiltration control system composed of thin layers of sand over gravel is highly efficient in terms of diversion length and that its efficiency can be enhanced by placing a hydraulic barrier – such as a layer of DBP – above the MRL.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号