首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   41篇
  国内免费   17篇
测绘学   35篇
大气科学   134篇
地球物理   398篇
地质学   666篇
海洋学   124篇
天文学   187篇
综合类   5篇
自然地理   105篇
  2021年   13篇
  2020年   11篇
  2019年   12篇
  2018年   37篇
  2017年   38篇
  2016年   60篇
  2015年   36篇
  2014年   51篇
  2013年   97篇
  2012年   65篇
  2011年   85篇
  2010年   88篇
  2009年   93篇
  2008年   68篇
  2007年   70篇
  2006年   61篇
  2005年   89篇
  2004年   66篇
  2003年   45篇
  2002年   46篇
  2001年   38篇
  2000年   24篇
  1999年   32篇
  1998年   25篇
  1997年   13篇
  1996年   26篇
  1995年   17篇
  1994年   20篇
  1993年   10篇
  1992年   19篇
  1991年   12篇
  1990年   20篇
  1989年   11篇
  1988年   12篇
  1987年   12篇
  1986年   16篇
  1985年   20篇
  1984年   18篇
  1983年   15篇
  1982年   14篇
  1981年   17篇
  1980年   12篇
  1979年   16篇
  1978年   14篇
  1977年   13篇
  1976年   13篇
  1975年   9篇
  1974年   17篇
  1973年   7篇
  1972年   5篇
排序方式: 共有1654条查询结果,搜索用时 15 毫秒
61.
62.
Abstract— A purely physical model based on a Monte Carlo simulation of galactic cosmic ray (GCR) particle interaction with meteoroids is used to investigate neutron interactions down to thermal energies. Experimental and/or evaluated excitation functions are used to calculate neutron capture production rates as a function of the size of the meteoroid and the depth below its surface. Presented are the depth profiles of cosmogenic radionuclides 36Cl, 41Ca, 60Co, 59Ni, and 129I for meteoroid radii from 10 cm up to 500 cm and a 2π irradiation. Effects of bulk chemical composition on n‐capture processes are studied and discussed for various chondritic and lunar compositions. The mean GCR particle flux over the last 300 ka was determined from the comparison of simulations with measured 41Ca activities in the Apollo 15 drill core. The determined value significantly differs from that obtained using equivalent models of spallation residue production.  相似文献   
63.
We explore flat ΛCDM models with bulk viscosity, and study the role of the bulk viscosity in the evolution of these universe models. The dynamical equations for these models are obtained and solved for some cases of bulk viscosity. We obtain differential equations for the Hubble parameter H and the energy density of dark matter ρ m , for which we give analytical solutions for some cases and for the general case we give a numerical solution. Also we calculate the statefinder parameters for these models and display them in the sr-plane.  相似文献   
64.
The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. (Science 339:52, 2013), where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics, but may actually be regarded to lead to the same kind of bizarre consequences as the standard approach of admitting the equation-of-state parameter w to be less than ?1. In universe models dominated by negative viscosity we find that the fluid’s entropy decreases with time, as one would expect. Moreover, we find that the fluid transition from the quintessence region into the phantom region (thus passing the phantom divide w=?1) can actually be reversed. Also in generalizations of the ΛCDM-universe models with a fluid having negative bulk viscosity we find that the viscosity decreases the expansion of the universe.  相似文献   
65.
Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except 7Li) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that Galactic Cosmic Rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified: primordial and stellar (7Li) and supernova neutrino spallation (7Li and 11B). In contrast, 9Be, 10B and 6Li are pure spallative products. This last isotope presents a special interest since the 6Li/7Li ratio has been measured recently in a few halo stars offering a new constraint on the early galactic evolution of light elements. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meter KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, which, at first sight, is contradictory to a dominating GCR origin of the light elements which predicts a quadratic relationship. As a consequence, the theory of the origin and evolution of LiBeB nuclei has to be refined. Aside GCRs, which are accelerated in the general interstellar medium (ISM) and create LiBeB through the break up of CNO by fast protons and alphas, Wolf-Rayet stars (WR) and core collapse supernovae (SNII) grouped in superbubbles could produce copious amounts of light elements via the fragmentation in flight of rapid carbon and oxygen nuclei colliding with H and He in the ISM. In this case, LiBeB would be produced independently of the interstellar medium chemical composition and thus a primary origin is expected. These different processes are discussed in the framework of a galactic evolutionary model. More spectroscopic observations (specifically of O, Fe, Li, Be, B) in halo stars are required for a better understanding of the relative contribution of the various mechanisms. Future tests on the injection and acceleration of nuclei by supernovae and Wolf Rayet relying on gamma-ray line astronomy will be invoked in the perspective of the European INTEGRAL satellite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
66.
Optimal orbits for Mars atmosphere remote sensing   总被引:1,自引:0,他引:1  
Most of the spacecrafts currently around Mars (or planned to reach Mars in the near future) use Sun-synchronous or near-polar orbits. Such orbits offer a very poor sampling of the diurnal cycle. Yet, sampling the diurnal cycle is of key importance to study Mars meteorology and climate. A comprehensive remote sensing data set should have been obtained by the end of the MRO mission, launched in 2005. For later windows, time-varying phenomena should be given the highest priority for remote sensing investigations. We present possible orbits for such missions which provide a rich spatial and temporal sampling with a relatively short repeat cycle (50 sols). After computation and determination of these orbits, said “optimal orbits”, we illustrate our results by tables of sampling and comparison with other orbits.  相似文献   
67.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   
68.
69.
The composition of the impact plasma produced by fast dust particles (v > 1 km/sec) hitting an Au or W target was measured both with a model of the HELIOS micrometeoroid experiment (low electric field at the target) and a high field detector. The plasma composition and the total plasma charge depend strongly on the impact velocity and the electric field strength at the target. Spectra of 9 different projectile-target combinations were analysed. Two types of spectra could be observed, depending on the projectile material. (1) Spectra of metals and hard dielectrics (Mohs' hardness ? 5). Particle constituents of low ionisation energy (e · u ? 7eV, e.g. Na, K, Al) dominate the spectra of these materials at impact velocities below 10 km/sec. At higher speed the relative intensities change and new ions with higher ionisation energies appear. (2) Spectra of soft dielectrics (Mohs' hardness < 3). Below 9 km/sec these materials produced less total charge than did the others. The highest masses were detected at 74 amu. The relative abundance of ions with low ionization energies such as Li, Na, K, etc. is comparatively small. Negative ions were also observed in the impact plasma. Their total number was found to be approximately 3–6% of that of the positive ions at 6 km/sec particle speed.  相似文献   
70.
Résumé La partie systématique des différences entre les positions des cratères de plusieurs catalogues est développée en harmoniques sphériques. L'application du test en 2 détermine l'ordre du développement. La méthode a été appliquée pour comparer le système de référence de Arthur avec les catalogues de Schrutka-Rechtenstamm et Gavrilov. On obtient les surfacesf (l, b) des différences systématiques de ces catalogues. La zone centrale de la face visible de la lune (± 40° en latitude et longitude) est bien déterminée, mais la zone marginale présente des différences systématiques qui peuvent atteindre le kilomètre.
The systematic part of the differences between positions in crater catalogues is expanded into spherical harmonics. The application of the 2 test determines the highest order of the expansion. The method was applied to compare the Arthur System with the Schrutka-Rechtenstamm and Gavrilov catalogues. The surfacesf (l, b) of systematic differences from these catalogues were obtained. The central zone of the near side of the Moon (± 40° in latitude and longitude) is well determined but the marginal zone presents systematic differences that can be as large as one kilometer.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号