首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8003篇
  免费   401篇
  国内免费   235篇
测绘学   338篇
大气科学   618篇
地球物理   1912篇
地质学   2767篇
海洋学   756篇
天文学   1364篇
综合类   89篇
自然地理   795篇
  2023年   36篇
  2022年   84篇
  2021年   140篇
  2020年   144篇
  2019年   181篇
  2018年   259篇
  2017年   222篇
  2016年   323篇
  2015年   239篇
  2014年   272篇
  2013年   477篇
  2012年   350篇
  2011年   442篇
  2010年   407篇
  2009年   457篇
  2008年   409篇
  2007年   340篇
  2006年   332篇
  2005年   291篇
  2004年   312篇
  2003年   238篇
  2002年   264篇
  2001年   142篇
  2000年   180篇
  1999年   127篇
  1998年   138篇
  1997年   100篇
  1996年   107篇
  1995年   102篇
  1994年   109篇
  1993年   84篇
  1992年   104篇
  1991年   75篇
  1990年   65篇
  1989年   59篇
  1988年   62篇
  1987年   73篇
  1986年   64篇
  1985年   73篇
  1984年   73篇
  1983年   86篇
  1982年   77篇
  1981年   77篇
  1980年   70篇
  1979年   70篇
  1978年   58篇
  1977年   37篇
  1976年   37篇
  1974年   29篇
  1973年   36篇
排序方式: 共有8639条查询结果,搜索用时 15 毫秒
91.
92.
93.
Nutrient deprivation or dietary restriction (DR) confers protection against ageing and stress in many animals and induced lysosomal autophagy is part of this mechanism. The effects of dietary restriction on the toxicity of copper and the polycyclic aromatic hydrocarbon phenanthrene have been investigated in the common marine mussel Mytilus edulis. The findings show that DR-induced autophagy facilitates the recovery of the digestive gland (i.e., molluscan liver analogue) from cell injury caused by both copper and phenanthrene. It is inferred that DR-induced autophagy and lysosomal proteolysis results in improved cellular "housekeeping" through the more efficient removal of oxidatively and pollutant damaged proteins (e.g., protein carbonyls, protein adducts, etc.) and that this contributes to stress resistance.  相似文献   
94.
95.
The formation of incised valleys on continental shelves is generally attributed to fluvial erosion under low sea level conditions. However, there are exceptions. A multibeam sonar survey at the northern end of Australia's Great Barrier Reef, adjacent to the southern edge of the Gulf of Papua, mapped a shelf valley system up to 220 m deep that extends for more than 90 km across the continental shelf. This is the deepest shelf valley yet found in the Great Barrier Reef and is well below the maximum depth of fluvial incision that could have occurred under a − 120 m, eustatic sea level low-stand, as what occurred on this margin during the last ice age. These valleys appear to have formed by a combination of reef growth and tidal current scour, probably in relation to a sea level at around 30–50 m below its present position.

Tidally incised depressions in the valley floor exhibit closed bathymetric contours at both ends. Valley floor sediments are mainly calcareous muddy, gravelly sand on the middle shelf, giving way to well-sorted, gravely sand containing a large relict fraction on the outer shelf. The valley extends between broad platform reefs and framework coral growth, which accumulated through the late Quaternary, coincides with tidal current scour to produce steep-sided (locally vertical) valley walls. The deepest segments of the valley were probably the sites of lakes during the last ice age, when Torres Strait formed an emergent land-bridge between Australia and Papua New Guinea. Numerical modeling predicts that the strongest tidal currents occur over the deepest, outer-shelf segment of the valley when sea level is about 40–50 m below its present position. These results are consistent with a Pleistocene age and relict origin of the valley.

Based on these observations, we propose a new conceptual model for the formation of tidally incised shelf valleys. Tidal erosion on meso- to macro-tidal, rimmed carbonate shelves is enhanced during sea level rise and fall when a tidal, hydraulic pressure gradient is established between the shelf-lagoon and the adjacent ocean basin. Tidal flows attain a maximum, and channel incision is greatest, when a large hydraulic pressure gradient coincides with small channel cross sections. Our tidal-incision model may explain the observation of other workers, that sediment is exported from the Great Barrier Reef shelf to the adjacent ocean basins during intermediate (rather than last glacial maximum) low-stand, sea level positions. The model may apply to other rimmed shelves, both modern and ancient.  相似文献   

96.
The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals’ behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins (Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature–time–depth recorders (TTDRs) to record dive depth and sea temperature. The penguins’ foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0–200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen Plateau.  相似文献   
97.
98.
The ZoNéCo 1 and 2 cruises of Ifremer's Research Vessel L'Atalante, collected new swath bathymetry and geophysical data over the southern and northern segments of the basins and ridges forming the Loyalty system. Between the two surveyed areas, previous studies found evidence for the resistance of the Loyalty Ridge to subduction beneath the New Hebrides trench near 22°S–169°E. On the subducted plate, except for seismicity related to the downbending of the Australian plate, recorded shallow seismicity is sparse within the Loyalty system (Ridge and Basin) where reliable focal mechanism solutions are almost absent.Swath bathymetry, seismic reflection and magnetic data acquired during the ZoNéCo 1 and 2 cruises revealed a transverse asymmetric morphology in the Loyalty system, and an along-strike horst and graben structure on the discontinuous Loyalty Ridge. South of 23°50S and at 20°S, the two WSW-ENE-trending fault systems, respectively, sinistral and dextral, that crosscut the southern and northern segments of the Loyalty system, are interpreted as due to the early effects of collision with the New Hebrides Arc. A NNW-SSE trend, evident along the whole Loyalty system and on the island of New Caledonia, is interpreted as an inherited structural trend that may have been reactivated through flexure of the Australian lithospheric plate at the subduction zone.Overall then, the morphology, structure and evolution of the southern and northern segments of the Loyalty system probably result from the combined effects of the Australian plate lithospheric bulge, the active Loyalty-New Hebrides collision and the overthrust of the New Caledonian ophiolite.  相似文献   
99.
100.
Transport of warm, nutrient-rich Circumpolar Deep Water (CDW) onto Antarctic continental shelves and coastal seas has important effects on physical and biological processes. The present study investigates the locations of this transport and its dynamics in the Ross Sea with a high-resolution three-dimensional numerical model. The model circulation is forced by daily wind stress along with heat and salt fluxes calculated from atmospheric climatologies by bulk formulae. All surface fluxes are modified by an imposed climatological ice cover. Waters under the Ross Ice Shelf are not included explicitly, but their effect on temperature and salinity is imposed in a buffer zone at the southern end of the model domain. A simple nutrient uptake is calculated based on the climatological chlorophyll distribution and Monod uptake kinetics.Model circulation is strongly affected by bottom topography, due to weak stratification, and agrees with schematics of the general flow and long-term current measurements except near the southern boundary. The sea-surface temperature is similar to satellite estimates except that the warmest simulated temperatures are slightly higher than observations. There is a significant correlation between the curvature of the shelf break and the transport across the shelf break. A momentum term balance shows that momentum advection helps to force flow across the shelf break in specific locations due to the curvature of the bathymetry (that is, the isobaths curve in front of the flow). For the model to create a strong intrusion of CDW onto the shelf, it appears two mechanisms are necessary. First, CDW is driven onto the shelf at least partially due to momentum advection and the curvature of the shelf break; then, the general circulation on the shelf takes the CDW into the interior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号