首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6903篇
  免费   249篇
  国内免费   88篇
测绘学   247篇
大气科学   538篇
地球物理   1630篇
地质学   2333篇
海洋学   554篇
天文学   1231篇
综合类   32篇
自然地理   675篇
  2022年   32篇
  2021年   83篇
  2020年   94篇
  2019年   135篇
  2018年   195篇
  2017年   173篇
  2016年   246篇
  2015年   187篇
  2014年   220篇
  2013年   432篇
  2012年   272篇
  2011年   365篇
  2010年   316篇
  2009年   411篇
  2008年   353篇
  2007年   308篇
  2006年   289篇
  2005年   269篇
  2004年   269篇
  2003年   220篇
  2002年   221篇
  2001年   118篇
  2000年   149篇
  1999年   111篇
  1998年   120篇
  1997年   89篇
  1996年   87篇
  1995年   90篇
  1994年   94篇
  1993年   77篇
  1992年   92篇
  1991年   69篇
  1990年   58篇
  1989年   54篇
  1988年   58篇
  1987年   53篇
  1986年   62篇
  1985年   70篇
  1984年   68篇
  1983年   79篇
  1982年   59篇
  1981年   68篇
  1980年   56篇
  1979年   67篇
  1978年   56篇
  1977年   38篇
  1976年   31篇
  1975年   27篇
  1974年   29篇
  1973年   31篇
排序方式: 共有7240条查询结果,搜索用时 15 毫秒
121.
122.
A new method for upscaling fine scale permeability fields to general quadrilateral-shaped coarse cells is presented. The procedure, referred to as the conforming scale up method, applies a triangle-based finite element technique, capable of accurately resolving both the coarse cell geometry and the subgrid heterogeneity, to the solution of the local fine scale problem. An appropriate averaging of this solution provides the equivalent permeability tensor for the coarse scale quadrilateral cell. The general level of accuracy of the technique is demonstrated through application to a number of flow problems. The real strength of the conforming scale up method is demonstrated when the method is applied in conjunction with a flow-based gridding technique. In this case, the approach is shown to provide results that are significantly more accurate than those obtained using standard techniques.  相似文献   
123.
124.
The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO42−-CH4 transition where H2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe2+ diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO42− and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO42−-CH4 and H2S-Fe2+ cause the trapping of isotopically heavy iron sulfide with δ34S = +15 to +33‰ at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO42− diffusing downward into the SO42−-CH4 transition has an isotopic composition of +19‰, close to the +23‰ of H2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO42− (+43‰) and H2S (−15‰) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth’s history.  相似文献   
125.
The relationships between phytoplankton productivity, nutrient distributions, and freshwater flow were examined in a seasonal study conducted in Escambia Bay, Florida, USA, located in the northeastern Gulf of Mexico. Five sites oriented along the salinity gradient were sampled 24 times over the 28-mo period from 1999 to 2001. Water column profiles of temperature and salinity were measured along with surface chlorophyll and surface inorganic nutrient concentrations. Primary productivity was measured at 2 sites on 11 dates, and estimated for the remaining dates and sites using an empirical regression model relating phytoplankton net production to the product of chlorophyll, euphotic zone depth, and daily solar insolation. Freshwater flow into the system varied markedly over the study period with record low flow during 2000, a flood event in March 2001, and subsequent resumption of normal flow. Flushing times ranged from 1 d during the flood to 20 d during the drought. Freshwater input strongly affected surface salinity distributions, nutrient flux, chlorophyll, and primary productivity. The flood caused high turbidity and rapid flushing, severely reducing phytoplankton production and biomass accumulation. Following the flood, phytoplankton biomass and productivity sharply increased. Analysis of nutrient distributions suggested Escambia Bay phytoplankton alternated between phosphorus limitation during normal flow and nitrogen limitation during low flow periods. This study found that Escambia Bay is a moderately productive estuary, with an average annual integrated phytoplankton production rate of 290 g C m−2 yr−1.  相似文献   
126.
Abstract Kaidun is a breccia of disparate enstatite and carbonaceous chondrite clasts that continues to provide real surprises. Many Kaidun clasts have been intensely altered by aqueous fluids, as evidenced by the widespread occurrence of ferromagnesian phyllosilicates and by the presence of carbonate- and phyllo-silicate-filled veins. In this report, we describe an unusual CM lithology containing many mineralogical features not previously reported from any meteorite, including pyrrhotite, with exclusive needlelike morphologies and thick mantles of phyllosilicate, and complex aggregates of phyllosilicate, melanite garnet, crosscut by pentlandite veins. The latter features appear to be due in large part to extensive hydrothermal alteration at temperatures on the order of 450 °C, which is significantly higher than that attained during secondary processing from other known CM material.  相似文献   
127.
The seismic probing of the crust and upper mantle in Canada started in 1938 and since then has involved many government and university groups using a wide variety of techniques. These have included simple profiling with both wide and narrow station spacing, areal time-term surveys, detailed deep reflection experiments, very long-range refraction studies and the analysis of surface wave dispersion between stations of the Canadian Standard Network.

A review of the published interpretation leads to the general conclusion that:

1. (1) Pn-velocities vary from a value possibly as low as 7.7 km/sec under Vancouver Island to 8.6 km/sec and higher in the extreme eastern part of the shield and some parts of the Atlantic coast.

2. (2) Large areas of Canada have a crustal thickness of 30–40 km, with Vancouver Island, the southwestern Prairies, the Lake Superior basin and parts of the eastern shield of Quebec being thicker. No continental area in Canada is known to have a crust thinner than 29 km.

3. (3) The Riel discontinuity — a deep intra-crustal reflector and sometime refractor, is widely reported in the Prairies and Manitoba. It is not seen to the north in the vicinity of Great Slave Lake, nor in the Hudson Bay, Lake Superior and Maritime regions, nor in the interior of British Columbia. It may be present in some areas of the eastern shield.

4. (4) As experiments have become more detailed, crustal structures of greater complexity have been revealed. The concept that crustal structure becomes simpler with increasing depth is apparently unfounded.

Long-range refraction studies suggest that the Gutenberg P-wave low-velocity channel is poorly developed under the Canadian Shield. The analysis of the dispersion of surface waves, however, suggests that the channel is better developed for S-waves, and is present throughout the country. The lid of the channel is deepest under the central shield and shallowest under the Cordillera.  相似文献   

128.
As mineral exploration seeks deeper targets, there will be a greater reliance on geophysical data and a better understanding of the geological meaning of the responses will be required, and this must be achieved with less geological control from drilling. Also, exploring based on the mineral system concept requires particular understanding of geophysical responses associated with altered rocks. Where petrophysical datasets of adequate sample size and measurement quality are available, physical properties show complex variations, reflecting the combined effects of various geological processes. Large datasets, analysed as populations, are required to understand the variations. We recommend the display of petrophysical data as frequency histograms because the nature of the data distribution is easily seen with this form of display. A petrophysical dataset commonly contains a combination of overlapping sub-populations, influenced by different geological factors. To understand the geological controls on physical properties in hard rock environments, it is necessary to analyse the petrophysical data not only in terms of the properties of different rock types. It is also necessary to consider the effects of processes such as alteration, weathering, metamorphism and strain, and variables such as porosity and stratigraphy. To address this complexity requires that much more supporting geological information be acquired than in current practice. The widespread availability of field portable instruments means quantitative geochemical and mineralogical data can now be readily acquired, making it unnecessary to rely primarily on categorical rock classification schemes. The petrophysical data can be combined with geochemical, petrological and mineralogical data to derive explanations for observed physical property variations based not only on rigorous rock classification methods, but also in combination with quantitative estimates of alteration and weathering. To understand how geological processes will affect different physical properties, it is useful to define three end-member forms of behaviour. Bulk behaviour depends on the physical properties of the dominant mineral components. Density and, to a lesser extent, seismic velocity show such behaviour. Grain and texture behaviour occur when minor components of the rock are the dominate controls on its physical properties. Grain size and shape control grain properties, and for texture properties the relative positions of these grains are also important. Magnetic and electrical properties behave in this fashion. Thinking in terms of how geological processes change the key characteristics of the major and minor mineralogical components allows the resulting changes in physical properties to be understood and anticipated.  相似文献   
129.
Geophysical data sets are growing at an ever-increasing rate, requiring computationally efficient data selection(thinning)methods to preserve essential information. Satellites, such as Wind Sat, provide large data sets for assessing the accuracy and computational efficiency of data selection techniques. A new data thinning technique, based on support vector regression(SVR), is developed and tested. To manage large on-line satellite data streams, observations from Wind Sat are formed into subsets by Voronoi tessellation and then each is thinned by SVR(TSVR). Three experiments are performed. The first confirms the viability of TSVR for a relatively small sample, comparing it to several commonly used data thinning methods(random selection, averaging and Barnes filtering), producing a 10% thinning rate(90% data reduction), low mean absolute errors(MAE) and large correlations with the original data. A second experiment, using a larger dataset, shows TSVR retrievals with MAE < 1 m s-1and correlations 0.98. TSVR was an order of magnitude faster than the commonly used thinning methods. A third experiment applies a two-stage pipeline to TSVR, to accommodate online data. The pipeline subsets reconstruct the wind field with the same accuracy as the second experiment, is an order of magnitude faster than the nonpipeline TSVR. Therefore, pipeline TSVR is two orders of magnitude faster than commonly used thinning methods that ingest the entire data set. This study demonstrates that TSVR pipeline thinning is an accurate and computationally efficient alternative to commonly used data selection techniques.  相似文献   
130.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号