首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29568篇
  免费   5615篇
  国内免费   7328篇
测绘学   2176篇
大气科学   5956篇
地球物理   7540篇
地质学   15082篇
海洋学   3844篇
天文学   1362篇
综合类   3027篇
自然地理   3524篇
  2024年   147篇
  2023年   496篇
  2022年   1479篇
  2021年   1691篇
  2020年   1378篇
  2019年   1647篇
  2018年   1786篇
  2017年   1564篇
  2016年   1804篇
  2015年   1557篇
  2014年   1778篇
  2013年   1798篇
  2012年   1777篇
  2011年   1740篇
  2010年   1802篇
  2009年   1625篇
  2008年   1519篇
  2007年   1369篇
  2006年   1100篇
  2005年   1086篇
  2004年   814篇
  2003年   785篇
  2002年   738篇
  2001年   831篇
  2000年   869篇
  1999年   1298篇
  1998年   1088篇
  1997年   1040篇
  1996年   1006篇
  1995年   806篇
  1994年   739篇
  1993年   707篇
  1992年   569篇
  1991年   407篇
  1990年   332篇
  1989年   277篇
  1988年   247篇
  1987年   155篇
  1986年   127篇
  1985年   98篇
  1984年   78篇
  1983年   59篇
  1982年   69篇
  1981年   50篇
  1980年   31篇
  1979年   33篇
  1978年   17篇
  1976年   11篇
  1975年   11篇
  1958年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
印度共和国主要矿产资源及其地质特征   总被引:2,自引:0,他引:2  
印度共和国是南亚地区矿产资源比较丰富的国家,铁矿探明储量175.7亿吨;铝土矿探明储量26.54亿吨;锰矿探明储量1.35亿吨;铬铁矿储量5900万吨;重晶石储量3000万吨。目前,全印度已开发了89种矿产资源,其中有52种非金属矿产,11种金属矿产,22种稀有金属矿产,4种能源矿产。全国生产矿  相似文献   
102.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
103.
Development of a 3D GIS and its application to karst areas   总被引:1,自引:0,他引:1  
There is a growing interest in modeling and analyzing karst phenomena in three dimensions. This paper integrates geology, groundwater hydrology, geographic information system (GIS), database management system (DBMS), visualization and data mining to study karst features in Huaibei, China. The 3D geo-objects retrieved from the karst area are analyzed and mapped into different abstract levels. The spatial relationships among the objects are constructed by a dual-linker. The shapes of the 3D objects and the topological models with attributes are stored and maintained in the DBMS. Spatial analysis was then used to integrate the data in the DBMS and the 3D model to form a virtual reality (VR) to provide analytical functions such as distribution analysis, correlation query, and probability assessment. The research successfully implements 3D modeling and analyses in the karst area, and meanwhile provides an efficient tool for government policy-makers to set out restrictions on water resource development in the area.  相似文献   
104.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   
105.
For the assessment of shallow landslides triggered by rainfall, the physically based model coupling the infinite slope stability analysis with the hydrological modeling in nearly saturated soil has commonly been used due to its simplicity. However, in that model the rainfall infiltration in unsaturated soil could not be reliably simulated because a linear diffusion-type Richards’ equation rather than the complete Richards’ equation was used. In addition, the effect of matric suction on the shear strength of soil was not actually considered. Therefore, except the shallow landslide in saturated soil due to groundwater table rise, the shallow landslide induced by the loss in unsaturated shear strength due to the dissipation of matric suction could not be reliably assessed. In this study, a physically based model capable of assessing shallow landslides in variably saturated soils is developed by adopting the complete Richards’ equation with the effect of slope angle in the rainfall infiltration modeling and using the extended Mohr–Coulomb failure criterion to describe the unsaturated shear strength in the soil failure modeling. The influence of rainfall intensity and duration on shallow landslide is investigated using the developed model. The result shows that the rainfall intensity and duration seem to have similar influence on shallow landslides respectively triggered by the increase of positive pore water pressure in saturated soil and induced by the dissipation of matric suction in unsaturated soil. The rainfall duration threshold decreases with the increase in rainfall intensity, but remains constant for large rainfall intensity.  相似文献   
106.
To prepare a landslide susceptibility map is essential to identify hazardous regions, construct appropriate mitigation facilities, and plan emergency measures for a region prone to landslides triggered by rainfall. The conventional mapping methods require much information about past landslides records and contributing terrace and rainfall. They also rely heavily on the quantity and quality of accessible information and subjectively of the map builder. This paper contributes to a systematic and quantitative assessment of mapping landslide hazards over a region. Geographical Information System is implemented to retrieve relevant parameters from data layers, including the spatial distribution of transient fluid pressures, which is estimated using the TRIGRS program. The factor of safety of each pixel in the study region is calculated analytically. Monte Carlo simulation of random variables is conducted to process the estimation of fluid pressure and factor of safety for multiple times. The failure probability of each pixel is thus estimated. These procedures of mapping landslide potential are demonstrated in a case history. The analysis results reveal a positive correlation between landslide probability and accumulated rainfall. This approach gives simulation results compared to field records. The location and size of actual landslide are well predicted. An explanation for some of the inconsistencies is also provided to emphasize the importance of site information on the accuracy of mapping results.  相似文献   
107.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
108.
109.
Gneissic rocks in the Chinese Altai Mountains have been interpreted as either Paleozoic metasedimentary rocks or Precambrian basement. This study reports geochemical and geochronological data for banded paragneisses and associated gneissic granitoids collected along a NE–SW traverse in the northwestern Chinese Altai. Petrological and geochemical data suggest that the protoliths of the banded gneisses were possibly immature sediments with significant volcanic input and that the gneissic granitoids were derived from I-type granites formed in a subduction environment. Three types of morphological features can be recognized in zircons from the banded gneisses and are interpreted to correlate with different sources. Zircons from five samples of banded paragneiss cluster predominantly between 466 and 528 Ma, some give Neoproterozoic ages, and a few yield discordant Paleoproterozoic to Archean ages. Zircon Hf isotopic compositions indicate that both juvenile/mantle and crust materials were involved in the generation of the source rocks from which these zircons were derived. In contrast, zircons occur ubiquitously as elongated euhedral prismatic crystals in the four samples of the gneissic granitoids, and define single populations for each sample with mean ages between 380 and 453 Ma. The general absence of Precambrian inheritance and positive zircon ?Hf values for these granitoids suggest insignificant crustal contribution to the generation of the precursor magmas. Our data can be interpreted in terms of a progressive accretionary history in early to middle Palaeozoic times, and the Chinese Altai may possibly represent a magmatic arc built on a continental margin dominated by Neoproterozoic rocks.  相似文献   
110.
The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies. These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf model ages (T DM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号