首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24564篇
  免费   180篇
  国内免费   916篇
测绘学   1411篇
大气科学   1980篇
地球物理   4521篇
地质学   11661篇
海洋学   1030篇
天文学   1644篇
综合类   2161篇
自然地理   1252篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2020年   5篇
  2019年   1篇
  2018年   4765篇
  2017年   4042篇
  2016年   2580篇
  2015年   237篇
  2014年   87篇
  2013年   35篇
  2012年   1000篇
  2011年   2747篇
  2010年   2024篇
  2009年   2329篇
  2008年   1894篇
  2007年   2372篇
  2006年   59篇
  2005年   209篇
  2004年   407篇
  2003年   410篇
  2002年   254篇
  2001年   49篇
  2000年   51篇
  1999年   16篇
  1998年   27篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Geoelectrical resistivity techniques are increasingly being applied in addressing a wide range of hydrological, environmental, and geotechnical problems. This is due to their effectiveness in near-surface characterization. In the present study, a suite of vertical electrical soundings (VESs) was integrated with 2D geoelectrical resistivity and time-domain induced polarization (IP) imaging to characterize the near-surface and delineate the underlying aquifer in a sedimentary terrain. The geophysical survey was conducted as part of preliminary studies to evaluate the potential of groundwater resource in Iyana-Iyesi and Canaan Land area of Ota, southwestern Nigeria. A high-yield confined sandy aquifer overlain by a low-yield aquitard was delineated; overlying the aquitard is a very resistive and thick layer that is predominantly composed of kaolinitic swelling clay intercalated with phosphate mineral.  相似文献   
972.
Size and strain rate are two key factors that dramatically influence the estimation of rock mechanical behaviors. To better understand the effects of size and strain rate on measured rocks, rock specimens with six different sizes were tested at six different strain rates under uniaxial compression using the MTS 815 Rock Mechanics Test System. Having determined that the size and strain rate significantly affect the peak strain, peak stress, elastic modulus, acoustic emission (AE), and failure pattern of the rock specimens, the relation was established between the strength and the size and strain rate of red sandstone. And the variation was revealed among the size and strain rate, the AE, and the failure pattern. It turned out that the peak stress was negatively correlated with the rock size and was positively correlated with the strain rate. When the length to diameter ratio (L/D) of the rock specimen was less than 2.0, the AE appeared mildly. The AE quantities gradually increased before the peak stress, and then sharply decreased after the peak stress. The failure pattern of the rock specimen was relatively complicated, with a fracture plane appearing along the axial direction. Conical failure type was also presented. When the L/D ratio of the specimen was greater than 2.0, the AE characteristics of red sandstone showed the radical model. There were relatively few AE rings before the peak stress. But the AE rings increased suddenly and dramatically during the peak stress. The rock specimens primarily failed with a single shear plane. Moreover, with an increase in the strain rate, the AE activities were enhanced and the AE quantities increased. When the strain rate of the rock specimen was less than 5.0?×?10?4/s, the rock specimen failed with a shear or tensile-shear pattern. And when the strain rate was greater than 5.0?×?10?4/s, the rock specimen tended to fail in a conical pattern.  相似文献   
973.
Gravity Recovery and Climate Experiment (GRACE) level two (L2) data is used in estimating the groundwater storage changes (GWSC) in the Nubian Sandstone Aquifer System (NSAS). This set of data consists of spherical harmonics coefficients with specific degree and order. The GRACE data is de-correlated using a sixth degree polynomial in order to reduce the effect of the noise error resulting from the correlation between the spherical harmonics coefficients with the same degree parity. The GRACE estimates of GWSC are smoothed using Gaussian filter with half width of 1000 km. This half width is chosen in order to maximize the correlation between the GRACE estimates of GWSC and previous modeling results of the NSAS. The loss in groundwater storage occurring in each of the four countries sharing the NSAS is calculated to assess the sustainability of using the NSAS as a water resource in each country. The overarching finding in this study is that NSAS is losing its groundwater storage at a very high rate. Also, it is found that Egypt is the fastest in losing its groundwater storage from the NSAS. This loss of groundwater storage in Egypt may not necessarily be resulting from in-country extractions because of the trans-boundary nature of this aquifer. The GRACE-based estimates are found to be close to available data and previous modeling results of the NSAS.  相似文献   
974.
An attempt has been made in Chinnar sub basin of Dharmapuri district, South India to isolate the geochemistry of uranium occurrences in groundwater. The geology of the area is mainly of charnockite and granite gneiss. Groundwater samples were collected for two different seasons post and pre monsoon in two different litho units (granite gneiss and charnockite) and analysed for major, minor and uranium concentrations. Higher uranium (18.45 μg L?1) has been recorded during pre monsoon season in granite gneiss with increasing pH. The saturation index calculation for the groundwater isolated minerals like uaraninite, coffinite, haiweeite and soddyite to be precipitating and uranium oxides like UO2.25, UO2.25beta, UO2.33beta as oversaturated. The Eh-pH diagram attempted represents solubility of uraninite within the pH range of 6.0 to 8.0. The study isolate uranium in groundwater of the study area is controlled by the presence of (U4O9) uranium oxide.  相似文献   
975.
This study deals with the evaluation of the structural setup of the Ras Banas area on the northwestern part of the Red Sea by using magnetic data. Different analyzing techniques were applied to achieve this goal including regional-residual separation, trend analysis, depth estimation, Euler deconvolution, horizontal gradient, analytic signal, and magnetic modeling. The results of these techniques were used to construct a deep-seated structural feature map.Lineament analysis indicates that the area was mainly affected by the NW, WNW, and NE tectonic trends. The magnetic modeling was performed along four profiles supported by Euler deconvolution, horizontal gradient, and analytic signal profiles. The modeled profiles show that the basement rocks composed of uplifted and down-faulted blocks at different depths as well as step-like structure. The basement rocks seem to be acidic in nature intruded by basic/ultrabasic dikes. Generally, the magnetic susceptibility ranges from 0.0003 to 0.04 cgs indicating acidic to basic/ultrabasic rock composition. The basement relief map shows an irregular basement surface, which varies greatly in depth from 1 to 5.6 km below sea level. The deep-seated structure map shows that the basement was highly affected by two main fault trends in the NW and NNE directions. The NW trending structures were intersected by younger left lateral NNE transform faults. These cross-faults dissect the area into a number of alternated and elongated blocks.  相似文献   
976.
Hydrogen site positions and occupancy in the crystal structure of dense hydrous magnesium silicate (DHMS) phase E were determined for the first time by pulsed neutron powder diffraction. A fully deuterated pure phase E powder sample, which had space group \(R\overline{3} m\) and lattice parameters of a = 2.97065(8) Å and c = 13.9033(4) Å, was synthesized at 15 GPa and 1100 °C. Through quantitative evaluation of refined structure parameters obtained with sufficient spatial resolution and very high signal-to-background ratio, we conclude that the O–D dipoles in the refined phase E structure are tilted by 24° from the direction normal to the layers of edge-shared MgO6 octahedra (octahedral layers). The tilted dipole structure of phase E is in remarkable contrast to that of brucite, Mg(OH)2, which has dipoles exactly normal to the octahedral layer. This contrast exists because the O–Si–O bonding unique in the phase E structure connects two adjacent octahedral layers and thereby reduces the interlayer O···O distance. This shrinkage of the interlayer distance induces the tilting of the O–D dipole and also generates unique O–D···O hydrogen bonding connecting all the layers in the phase E structure.  相似文献   
977.
We measured the ion conductivity of single-crystal alkali feldspar originating from two different locations in the Eifel/Germany, named Volkesfeld and Rockeskyller sanidine and having potassium site fractions \(C_\mathrm{K}\) of 0.83 and 0.71, respectively. The dc conductivities resulting from electrochemical impedance spectroscopy over the temperature range of 300–900 \(^{\circ }\hbox {C}\) show a weak composition dependence but pronounced differences between the b-direction [\(\perp (010)\)] and \(c^{*}\)-direction [\(\perp (001)\)] of the monoclinic feldspar structure. Conductivity activation energies obtained from the observed linear Arrhenius plots are close to 1.2 eV in all cases, which is closely similar to the activation energies of the \(^{22}\mathrm{Na}\) tracer diffusivity in the same crystals. Taking into account literature data on K tracer diffusion and diffusion correlation effects, the present results point to a predominance of the interstitialcy mechanism over the vacancy mechanism in mass and charge transport on the alkali sublattice in potassium-rich alkali feldspar.  相似文献   
978.
Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth’s crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure–volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P–T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate–sulfide speciation may play a major role in the sulfur recycling into the deep Earth.  相似文献   
979.
Understanding the processes of differentiation of the Yellowstone–Snake River Plain (YSRP) rhyolites is typically impeded by the apparent lack of erupted intermediate compositions as well as the complex nature of their shallow interaction with the surrounding crust responsible for their typically low O isotopic ratios. A pair of normal-δ18O rhyolitic eruptions from the Heise eruptive centre in eastern Idaho, the Wolverine Creek Tuff and the Conant Creek Tuff, represent unique magmatic products of the Yellowstone hotspot preserving abundant vestiges of the intermediate differentiation steps leading to rhyolite generation. We address both shallow and deep processes of magma generation and storage in the two units by combining high-precision ID–TIMS U–Pb zircon geochronology, trace element, O and Hf isotopic studies of zircon, and Sr isotopic analyses of individual high-Mg# pyroxenes inherited from lower- to mid-crustal differentiation stages. The zircon geochronology confirms the derivation of both tuffs from the same rhyolitic magma reservoir erupted at 5.5941 ± 0.0097 Ma, preceded by at least 92 ± 14 ky of continuous or intermittent zircon saturation approximating the length of pre-eruptive magma accumulation in the upper crust. Some low-Mg# pyroxenes enclosing zircons predate the eruption by at least 45 ± 27 ky, illustrating the co-crystallisation of major and accessory phases in the near-liquidus rhyolitic melts of the YSRP over a significant period of time. Coeval zircon crystals are isotopically heterogeneous (two populations at εHf ~?5 and ?13), requiring the assembly of isotopically distinct melt pockets directly prior to, or during, the eruption. The primitive Mg# 60–90 pyroxenes are out of isotopic equilibrium with the host rhyolitic melt (87Sr/86Sri = 0.70889), covering a range of 87Sr/86Sri = 0.70705–0.70883 corresponding to ratios typical of the most radiogenic YSRP basalts to the least radiogenic YSRP rhyolites. Together with the low εHf in zircon, the Sr isotopic ratios illustrate limited assimilation dominated by radiogenic Archean crustal source materials incorporated into variably evolved YSRP melts as they progress towards rhyolitic compositions by assimilation–fractional crystallisation.  相似文献   
980.
This study investigates the characteristics of geothermal water in 10 geothermal fields in Beijing. The relationships between the deuterium excess parameter (d) and temperature, depth, age of geothermal groundwater, groundwater flow field, and Eh were investigated using geothermal groundwater samples. Results showed that (1) the average d value of geothermal water is 5.4, whereas that of the groundwater in normal temperature is 6.04. The differences are induced by the oxygen isotope exchange during the water–rock interaction, which may be more easily completed in geothermal water than in cold groundwater. (2) The d value increases remarkably with the age of the geothermal groundwater. The d value increases from 11.2 to 14.6 when the age of the geothermal water is 12,760 ± 130 a and 38,960 ± 630 a, respectively. Moreover, the isotope heat exchange for composition of the hydrogen and oxygen isotopes in the geothermal groundwater proceeds sufficiently with time. (3) The d value decreases from 5.72 to 3.03 when the depth increases from 125.13 to 3221 m. Generally, in the same area, the d value decreases with depth because the temperature is increasing. (4) The d value of the groundwater gradually reduces from the northern recharge area to the southern discharge area. The average d value is 7.31 in the northern recharge area and 5.68 in the middle Beijing Depression, whereas the d value in the southern area of Fengheying is ?9.20. The larger difference in d values between the recharge and discharge areas is due to the slower velocity of underwater flow, which induces longer time for oxygen exchange. (5) The relationship between the d and Eh is complex. When Eh is <200 mV, the d value of the geothermal water decreases with the decrease in Eh. When Eh is higher than 200 mV, the d value increases slightly with the decrease in Eh. The study of the characteristics of deuterium excess parameters for geothermal water could provide a scientific isotopic evidence for assessment and exploitation measures in geothermal groundwater systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号