This study aims to develop a new earthquake strong motion-intensity catalog as well as intensity prediction equations for Iran based on the available data. For this purpose, all the sites which had both recorded strong motion and intensity values throughout the region were first searched. Then, the data belonging to the 306 identified sites were processed, and the results were compiled as a new strong motion-intensity catalog. Based on this new catalog, two empirical equations between the values of intensity and the ground motion parameters (GMPs) for the Iranian earthquakes were calculated. At the first step, earthquake “intensity” was considered as a function of five independent GMPs including “Log (PHA),” “moment magnitude (MW),” “distance to epicenter,” “site type,” and “duration,” and a multiple stepwise regression was calculated. Regarding the correlations between the parameters and the effectiveness coefficients of the predictors, the Log (PHA) was recognized as the most effective parameter on the earthquake “intensity,” while the parameter “site type” was removed from the equations since it was determines as the least significant variable. Then, at the second step, a simple ordinary least squares (OLS) regression was fitted only between the parameters intensity and the Log (PHA) which resulted in more over/underestimated intensity values comparing to the results of the multiple intensity-GMPs regression. However, for rapid response purposes, the simple OLS regression may be more useful comparing to the multiple regression due to its data availability and simplicity. In addition, according to 50 selected earthquakes, an empirical relation between the macroseismic intensity (I0) and MW was developed. 相似文献
The growing use of underground structures, specifically to facilitate urban transportation, highlights the need to scrutinize the effects of such spaces on the seismic ground response as well as the surrounding buildings. In this regard, the seismic ground amplification variations in the vicinity of single and twin box-shaped tunnels subjected to SV waves have been investigated by the finite difference method. To evaluate the effects, generalizable dimensionless diagrams based on the results of parametric numerical analysis considering factors such as variations in the tunnels’ depth, the distances between the tunnels, tunnel lining flexibility, and input wave frequency, have been presented. In addition, to assess the effects of underground box-shaped tunnels on the response spectrum of the ground surface, seven selected accelerograms have been matched based on a specific design spectrum for the stiff soil condition of Eurocode 8 (CEN, 2006). The results underline the significant amplification effect of the box-shaped tunnels on the ground motions, specifically in the case of horizontal twin tunnels, which should be given more attention in current seismic design practices for surface structures.
Strong motion records of Turkey are studied in order to prepare a catalog to be used as a database for further studies (for instance empirical attenuation laws). The network started to be installed in 1973, and the first record was obtained in 1976. The instruments are of SMA-1 analog recorders and SIG SM-2 and GeoSys GSR-16 digital types. Out of a total of 426 records released on the web sites of the General Directorate of the Disaster Affairs and of Kandili Observatory, a set of 210 records was selected with a satisfactory quality, for which it was possible to associate correctly determined source parameters (source magnitudes and epicentral distances). Most of the records are obtained from around North and East Anatolian Fault zones, as well as from western and southwestern parts of Turkey. The main outcome of this paper is a strong motion catalog of Turkey, with the indication of site conditions, of the frequency band of the reliability of the records, peak values of acceleration, velocity and displacements, source parameters (magnitude, epicentral and macroseismic distances), intensity and finally the fault plane solutions whenever possible. The aim is to have, with other regional dataset, a homogenous and good quality dataset. 相似文献
Estimation of reference evapotranspiration (ET0) in urban areas is challenging but essential in arid urban climates. To evaluate ET0 in an urban environment and non-urban areas, air temperature and relative humidity were measured at five different sites across the arid city of Isfahan, Iran, over 4 years. Wind speed and sunshine hours were obtained from an urban surrounding weather station over the same period and used to estimate ET0. Calculated ET0 was compared with satellite-based ET0 retrieved from the MOD16A2 PET product. Although MODIS PET was strongly correlated with the Valiantzas equation, it overestimated ET0 and showed average accuracy (r = 0.93–0.94, RMSE = 1.18–1.28 mm/day, MBE = 0.73–0.84 mm/day). The highest ET0 differences between an urban green space and a non-urban area were 1.1 and 0.87 mm/day, which were estimated by ground measurements and MODIS PET, respectively. The sensitivity of ET0 to wind speed and sunshine hours indicated a significant effect on cumulative ET0 at urban sites compared to the non-urban site, which has a considerable impact on the amount of irrigation required in those areas. Although MODIS PET requires improvement to accurately reflect field level microclimate conditions affecting ET0, it is beneficial to hydrological applications and water resource managers especially in areas where data is limited. In addition, our results indicated that using limited data methods or meteorological data from regional weather stations, leads to incorrect estimation of ET0 in urban areas. Therefore, decision-makers and urban planners should consider the importance of precisely estimating ET0 to optimize management of urban green space irrigation, especially in arid and semi-arid climates such as the city of Isfahan. 相似文献
Natural Resources Research - Production forecasts are extremely sensitive to the spatial distribution of certain reservoir parameters, especially permeability, which controls fluid flow and... 相似文献
In this study, a scheme is presented to estimate groundwater storage variations in Iran. The variations are estimated using 11 years of Gravity Recovery and Climate Experiments (GRACE) observations from period of 2003 to April 2014 in combination with the outputs of Global Land Data Assimilation Systems (GLDAS) model including soil moisture, snow water equivalent, and total canopy water storage. To do so, the sums of GLDAS outputs are subtracted from terrestrial water storage variations determined by GRACE observations. Because of stripping errors in the GRACE data, two methodologies based on wavelet analysis and Gaussian filtering are applied to refine the GRACE data. It is shown that the wavelet approach could better localize the desired signal and increase the signal‐to‐noise ratio and thus results in more accurate estimation of groundwater storage variations. To validate the results of our procedure in estimation of ground water storage variations, they are compared with the measurements of pisometric wells data near the Urmia Lake which shows favorable agreements with our results. 相似文献
Results from geophysical investigations (electrical resistivity, electromagnetic mapping and seismic refraction) on an excavated
cell of the Ouled Fayet (Algiers, Algeria) pilot landfill indicated the presence of an underground runoff and permeable soil
underneath the cell. These results contradict those obtained by a feasibility study, based, however, only on the analysis
of seventy-six 10-m drilling cores. The 1D boreholes information has been proven to be insufficient and to give biased results.
The presence of water at depth is evidenced by lower resistivity, high conductivity anomalies and increase of P-wave velocity.
Thus, to the contrary of what is claimed in the feasibility study, a threat of leachate pollution is real. This study shows
that landfill construction studies cannot give trustful results without geophysical investigations. More specifically, in
Algeria, it is imperative to elaborate a landfill construction code, which should include mandatory geophysical prospecting
and deeper drilling cores. 相似文献
Paleomagnetic investigations of the folded Upper Namurian–Lower Moscovian “Hassi Bachir” Formation cropping out in the “Ahnet” basin (Central Sahara, Algeria) yield two magnetic components. A pre-folding primary magnetization (D = 136.1°, I = 22.0°, k = 217, α95 = 2.6°) enables us to define a paleomagnetic pole (32.8°S, 55.7°E, K = 328 and A95 = 2.0°) which better constrains a paleopole that was determined by Daly and Irving [Daly, L., Irving, E., 1983. Paléomagnétisme des roches carbonifères du Sahara central; analyse des aimantations juxtaposées; configurations de la Pangée. Ann. Geophys. 1, 207–216] for the same formation. A secondary component consists in a synfolding remagnetization and shows that post-Permian tectonics account for at least about half of the total folding in the studied area. This indicates that Mesozoic folding noted 150 km to the West in the Reggane basin [Smith, B., Derder, M.E.M., Henry, B., Bayou, B., Amenna, M., Djellit, H., Yelles, A.K., Garces, M., Beamud, E., Callot, J.P., Eschard, R., Chambers, A., Aifa, T., Ait Ouali, R., Gandriche, H., 2006. Relative importance of the Hercynian and post-Jurassic tectonic phases in the Saharan platform: a palaeomagnetic study of Jurassic sills in the Reggane basin (Algeria). Geophys. J. Int. 167, 380–396] is not local and affected at least the entire north-western part of the Hoggar area. This reconfirms that the folding of the Paleozoic cover in the Sahara platform should not be restricted to the Hercynian orogeny. 相似文献