首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47234篇
  免费   369篇
  国内免费   1041篇
测绘学   1750篇
大气科学   3176篇
地球物理   8861篇
地质学   20446篇
海洋学   3242篇
天文学   6914篇
综合类   2194篇
自然地理   2061篇
  2022年   267篇
  2021年   437篇
  2020年   401篇
  2019年   466篇
  2018年   5637篇
  2017年   4855篇
  2016年   3434篇
  2015年   605篇
  2014年   851篇
  2013年   1324篇
  2012年   1878篇
  2011年   3788篇
  2010年   3040篇
  2009年   3503篇
  2008年   2919篇
  2007年   3552篇
  2006年   1120篇
  2005年   769篇
  2004年   939篇
  2003年   950篇
  2002年   810篇
  2001年   563篇
  2000年   466篇
  1999年   352篇
  1998年   349篇
  1997年   329篇
  1996年   255篇
  1995年   265篇
  1994年   238篇
  1993年   186篇
  1992年   208篇
  1991年   182篇
  1990年   197篇
  1989年   190篇
  1988年   156篇
  1987年   185篇
  1986年   173篇
  1985年   208篇
  1984年   199篇
  1983年   203篇
  1982年   188篇
  1981年   192篇
  1980年   183篇
  1979年   185篇
  1978年   158篇
  1977年   142篇
  1976年   141篇
  1975年   136篇
  1974年   125篇
  1973年   165篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Journal of Geographical Systems - This paper raises a fundamental question about Sub-Saharan Africa: has urbanization there been accompanied by improvements in personal wellbeing? It then proceeds...  相似文献   
72.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
73.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   
74.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation.  相似文献   
75.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
76.
77.
Geo-visualization concept has been used for positioning water harvesting structures in Varekhadi watershed consisting of 26 mini watersheds, falling in Lower Tapi Basin (LTB), Surat district, Gujarat state. For prioritization of the mini watersheds, morphometric analysis was utilized by using the linear parameters such as bifurcation ratio (Rb), drainage density (Dd), stream frequency (Fu), texture ratio (T), length of overland flow (Lo) and the shape parameter such as form factor (Rf), shape factor (Bs), elongation ratio (Re), compactness constant (Cc) and circularity ratio (Rc). The different prioritization ranks were assigned after evaluation of the compound factor. 3 Dimensional (3D) Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM) and DEM from topo contour were analyzed in ArcScene 9.1 and the fly tool was utilized for the Geo-visualization of Varekhadi mini watersheds as per the priority ranks. Combining this with soil map and slope map, the best feasibility of positioning check dams in mini-watershed no. 1, 5 and 24 has been proposed, after validation of the sites.  相似文献   
78.
In the Global Positioning System, there is no provision for real-time integrity information within the Standard Positioning Service, by design. However, in safety critical sectors like aviation, stringent integrity performance requirements must be met. This can be achieved using the special augmentation systems or RAIM (Receiver Autonomous Integrity Monitoring) or both. RAIM, the most cost-effective method relies on data consistency, and therefore requires redundant measurements for its operation. An external aid to provide this redundancy can be in the form of an Inertial Navigation system. This should enable continued performance even when no redundant satellite measurements are available. An algorithm presented in previous papers by the authors detects the rate of slowly growing errors. The algorithm was shown to be effective for early detection of slowly growing errors that belong to the class of most difficult to detect errors. Firstly, rate detector is tested for varying faults. Secondly, real data are used to validate the rate detector algorithm. The data are extensively analyzed to ascertain whether it is suitable for integrity and fault diagnostics. A modification to the original rate detector algorithm is suggested by addition of a bias state to the dynamic model. The performance is then compared with the existing techniques and substantial improvement is shown.  相似文献   
79.
We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20–55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates ( \(>\) 135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.  相似文献   
80.
Algorithms, designed for digital image processing in standard mainframe computers and representing sequential stages in a land-use classification procedure, are used to produce maps of agricultural crop types from multispectral satellite imagery. Pixel reflectance values are first grouped according to an unsupervised “rapid classification algorithm,” or data compression procedure. Mean reflectance values of the resulting classes then go into a supervised “sequential clustering algorithm” where classes are refined according to training value and other parameter inputs. The objective is to increase the accessibility of automated image interpretation while balancing classification accuracy and processing time. Translated from: Vestnik Moskovskogo Universiteta, geografiya, 1984, No. 4, pp. 63-69.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号