首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   2篇
测绘学   4篇
大气科学   16篇
地球物理   8篇
地质学   28篇
海洋学   1篇
天文学   39篇
自然地理   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2008年   3篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1978年   5篇
  1970年   1篇
排序方式: 共有97条查询结果,搜索用时 78 毫秒
61.
Long term (2005–2016) daily precipitation isotope data (δ18O, δD and d-excess) from Ahmedabad in semi-arid Western India are examined in light of various meteorological parameters and air parcel trajectories to identify prominent patterns in the isotopic character and discern the underlying hydrometeorological processes. One of the most prominent and systematic annual patterns is the isotopic depletion (average δ18O: − 2.5‰ in Jun–Jul; − 5.2‰ in Aug–Sept) in the second half of the Indian Summer Monsoon (ISM), which is observed in the 11 out of the 12 years of this study. Four geographically feasible causal factors have been examined if they contribute to observed late monsoon isotopic depletion. These factors are: (1) increased contribution of terrestrially recycled vapor; (2) intra-seasonal change in sea-surface, surface-air and cloud base temperatures; (3) increased rain-out fraction from marine vapor parcel; and (4) increase in relative proportion of convective rain. It is inferred from the present study that isotopic depletion in the second half of ISM is associated with: (1) increased contribution (45% from 36%) of terrestrially recycled moisture; (2) 1.9° C lower cloud base temperature; (3) increased rainout fraction due to decreased wind velocity (6.9 m/s from 8.8 m/s); and (4) an increase of 22.3% in the proportion of convective rain. Daily rain events with atypical isotopic composition (20‰ < d-excess < 0‰) are ascribed mainly to local weather perturbations causing sudden updraft of moist air facilitating terrestrial recycling of water vapor.  相似文献   
62.
We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30–60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air–sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean–atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30–60 day) despite a drier monsoon over the Indian land mass.  相似文献   
63.
64.
We present the first results from the low-energy detector payload of the solar X-ray spectrometer (SOXS) mission, which was launched onboard the GSAT-2 Indian spacecraft on May 08, 2003 by the GSLV-D2 rocket to study solar flares. The SOXS low-energy detector (SLD) payload was designed, developed, and fabricated by the Physical Research Laboratory (PRL) in collaboration with the Space Application Centre (SAC), Ahmedabad and the Indian Space Research Organization (ISRO) Satellite Centre (ISAC), Bangalore. The SLD payload employs state-of-the-art, solid-state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (−20 °C). The energy ranges of the Si PIN and CZT detectors are 4 – 25 and 4 – 56 keV, respectively. The Si PIN provides sub-keV energy resolution, while the CZT provides ~1.7 keV energy resolution throughout the energy range. The high sensitivity and sub-keV energy resolution of the Si PIN detector allows measuring the intensity, peak energy, and the equivalent width of the Fe-line complex at approximately 6.7 keV, as a function of time in all ten M-class flares studied in this investigation. The peak energy (E p) of the Fe-line feature varies between 6.4 and 6.7 keV with increase in temperature from 9 to 58 MK. We found that the equivalent width (w) of the Fe-line feature increases exponentially with temperature up to 30 MK and then increases very slowly up to 40 MK. It remains between 3.5 and 4 keV in the temperature range of 30 – 45 MK. We compare our measurements of w with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both E p and w with temperature as being to the changes in the ionization and recombination conditions in the plasma during the flare, and as a consequence, the contribution from different ionic emission lines also varies.  相似文献   
65.
The Solar X-ray Spectrometer (SOXS) mission onboard GSAT-2 Indian Spacecraft was launched on 08 May 2003 using GSLV-D2 rocket by Indian Space Research Organization (ISRO). SOXS aims to study solar flares, which are the most violent and energetic phenomena in the solar system, in the energy range of 4–56 keV with high spectral and temporal resolution. SOXS employs state-of-the-art semiconductor devices, viz., Si-Pin and CZT detectors to achieve sub-keV energy resolution requirements. In this paper, we present an overview of data acquisition, control, communication and computation of low energy payload of the SOXS mission.  相似文献   
66.
Young-of-the-year (YOY) bluefish, Pomatomus saltatrix, reside in some contaminated estuaries of the mid-Atlantic bight during their early life history, and as a result of this exposure, they may bioaccumulate high levels of contaminants, including polychlorinated biphenyls (PCBs), pesticides, and methyl mercury. Young-of-the-year bluefish from the Tuckerton, NJ, area of Great Bay (TK) were fed daily in a laboratory with common prey fish, menhaden, and mummichog from two sites: TK (reference) or Hackensack River (HR) (contaminated). Bluefish fed HR prey and the HR prey themselves had significantly elevated concentrations of PCBs, pesticides, and total mercury compared to TK counterparts. The bluefish fed contaminated prey for 4 months displayed significantly reduced feeding, spontaneous activity, and growth compared to the bluefish fed TK prey. Alterations of bluefish behavior and growth from exposure to contaminants may have detrimental effects on migration, overwinter survival, and recruitment success.  相似文献   
67.
68.
Large number of rain water samples, at 7 rural locations in the semi-arid region of the DeccanPlateau were collected during 4 consecutive monsoon seasons (1979-1982).pH, conductivityand the major ionic components (C1~-, SO_4~= , NO_3~- , NH_4~+ , Na~+, K~+, Ca~(++), Mg~(++) of the abovesamples were determined. The pH of rain water was found to be highly alkaline and the valuesvaried from 6.4 to 7.8. Soil-oriented elements showed good correltioan (r~0.6) with pH valuesof rain water. The high concentration of soil-oriented elements, specially Ca~(++), is found to play animportant role in neutralizing the acidity of rain water and maintaining high alkaline pH. The studysuggested that the contribution of atmospheric aerosol of natural sources (sea and soil) to thechemical composition of rain water is more than that of anthropogenic origin.  相似文献   
69.
Simultaneous observations of amplitude scintillations at 40 MHz, 140 MHz and 360 MHz radiated from ATS-6 satellite at 34° E longitude were made at Ootacamund near the magnetic equator in India. It has been found that the frequency variation of scintillation index (S 4) isS 4f ?n , withn being about 1·2 only for weak scintillations, i.e., so long as the scintillation index does not exceed 0·6 at the lower frequency. For strong scintillations (S 4>0·6) where multiple scattering may be present, the exponentn itself is a function of the intensity of scintillation, the scintillation indices at two frequencies are related by:S 4(f 1)=S 4(f 2) exp [1·3 log(f 2/f 1)(1?S 4(f 2)] so long asf 2/f 1≤3. Thus knowing scintillation index at a given frequency one can estimate the scintillation index at another frequency. This will be of significant importance for communication problems. Evidence is also shown for the reversal of the frequency law in cases of intense scintillations.  相似文献   
70.
The total suspended particulate (TSP) levels at Delhi (north India) were measured on 116 days between February and October 1980. The observations were stratified according to season and the values of cross-correlation of the TSP and its components were evaluated. High TSP (209 g m-3) levels were found during the summer period associated with hot and dry weather in the region and low TSP (109 g m-3) were found during the monsoon period. Most of the TSP mass was associated with natural soil elements, such as Fe, Al, Mn, Ca, and K. Only a fraction of the mass of the TSP was comprised of elements from anthropogenic sources, e.g., Pb, Ni, Cd, Sb, Cu, and Zn. The aerosols at Delhi were potentially basic in nature, unlike those in European countries which are acidic in nature and cause acid rainfall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号