首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
大气科学   1篇
地球物理   16篇
地质学   28篇
海洋学   11篇
自然地理   13篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有69条查询结果,搜索用时 46 毫秒
61.
The role of the microzooplankton community in regulating phytoplankton biomass was examined across a gradient from a river-dominated estuary to an oceanic-influenced coastal zone. Three stations located along a salinity gradient from the central region of Mobile Bay to 10 km off the coast were sampled from May 1994 to August 1995. Microzooplankton herbivory rates on phytoplankton and microzooplankton excretion of nitrogen derived from phytoplankton were estimated using the dilution technique. Microzooplankton grazing rates (range of station means=0.57–1.10 d−1) and phytoplankton growth rates (0.70–1.62 d−1) both increased across the salinity gradient from the bay station to the offshore station. However, the percent of primary production grazed per day was highest at the bay station (mean=83%) and decreased to a low at the offshore station (mean=64%). Excretion of phytoplankton-derived nitrogen by the microzooplankton was greatest at the bay and bay mouth stations. Excreted nitrogen could potentially supply 39%, 29%, and 20% of phytoplankton nitrogen demand at the bay, bay mouth, and offshore stations, respectively. These results support the idea that herbivorous microzooplankton are important in mediating nitrogen flow to both lower and higher trophic levels. *** DIRECT SUPPORT *** A01BY085 00012  相似文献   
62.
Borehole and geophysical data have been collated for two sections across the Tay estuary on the lines of the road and rail bridges at Dundee. Geological reconstructions reveal a complex late-glacial and Holocene fill resting on a basement of Devonian sandstones and lavas. Comparative analyses of bathymetric charts (1816–1970) have enabled areas of present-day relatively stable and unstable bed to be identified. Stable areas are underlain by either gravels or partially compacted clays; unstable areas by loose, coarse to fine, sands. Non-migratory channels coincide with the stable areas; shifting sand banks and migratory channels occur elsewhere.  相似文献   
63.
64.
Attributed to escape of water from unconsolidated deposits, teepee and dish-and-pillar structures are common features in the Late Proterozoic Torridonian red bed succession of NW Scotland. Study of the first annual flood on a modern depositional analogue, in Wadi Baysh, Saudi Arabia, revealed that a layer of mud, initially deposited across the alluvium, restricted the escape of air being displaced through the normally unconfined aquifer by waters entering the aquifer from the river channels. As air bubbled through high level pool-floor muds, it generated dish-and-pillar structures. The formation of teepee structures by similarly combined air and water escapes nearer to the channel later in the annual cycle of flooding is foreseen. It is suggested that the two sediment structures are generated in response to different parts of the aquifer recharge spectrum. The role of air displacement by influent waters is important in the initial phases of structure formation, and combined air and water escape creates greater disturbance to the sediments. The sedimentary structures formed are not, therefore, solely due to water escape, as has been previously suggested. Ephemeral seasonal flooding appears to have characterized the deposition of at least the Stoer Group and Diabaig Formation sediments in the Torridonian.  相似文献   
65.
This study investigates how Mattituck Sill influences circulation patterns and physical dynamics in eastern Long Island Sound, a major estuary on the U.S. east coast. Observations show there is pronounced across-estuary transport in the area and suggest there may be subtidal anticyclonic flow around the sill. Model runs, with and without sill bathymetry, exhibit this across-estuary transport and anticyclonic circulation. Comparison between these runs indicates that the sill intensifies the anticyclonic circulation. This study finds the sill does not exert internal hydraulic control during neap, mean, or spring tidal conditions. Nevertheless, along-estuary exchange is reduced over the sill and across-estuary fluxes are increased. The Connecticut River plume enters close to the estuary mouth. The sill deflects more of the plume waters towards the mouth, causing less freshwater to take the long looping route through the estuary. The subtidal circulation balance around the sill indicates a barotropic balance between the tidal advection of tidal vorticity and friction. The subtidal vorticity balance indicates the net effect of tidal advection of relative vorticity is balanced with frictional curl associated with lateral speed gradients and vorticity dissipation. Previously developed scalings based on the circulation balance (Nature 290:549–555, 1981), frictional vorticity generation mechanisms (Deep-Sea Res 28:195–212, 1981), and tidal diffusion of potential vorticity (J Phys Oceanogr 29:821–827, 1999) are applicable to Mattituck Sill and predict circulation with a similar magnitudes to model results.  相似文献   
66.
67.
68.
The continental shelf benthic iron flux and its isotope composition   总被引:1,自引:0,他引:1  
Benthic iron fluxes from sites along the Oregon-California continental shelf determined using in situ benthic chambers, range from less than 10 μmol m−2 d−1 to values in excess of ∼300 μmol m−2 d−1. These fluxes are generally greater than previously published iron fluxes for continental shelves contiguous with the open ocean (as opposed to marginal seas, bays, or estuaries) with the highest fluxes measured in the regions around the high-sediment discharge Eel River and the Umpqua River. These benthic iron fluxes do not covary with organic carbon oxidation rates in any systematic fashion, but rather seem to respond to variations in bottom water oxygen and benthic oxygen demand. We hypothesize that the highest rates of benthic iron efflux are driven, in part, by the greater availability of reactive iron deposited along these river systems as compared to other more typical continental margin settings. Bioirrigation likely plays an important role in the benthic Fe flux in these systems as well. However, the influence of bottom water oxygen concentrations on the iron flux is significant, and there appears to be a threshold in dissolved oxygen (∼60-80 μM), below which sediment-ocean iron exchange is enhanced. The isotope composition of this shelf-derived benthic iron is enriched in the lighter isotopes, and appears to change by ∼3‰ (δ56Fe) during the course of a benthic chamber experiment with a mean isotope composition of −2.7 ± 1.1‰ (2 SD, n = 9) by the end of the experiment. This average value is slightly heavier than those from two high benthic Fe flux restricted basins from the California Borderland region where δ56Fe is −3.4 ± 0.4‰ (2 SD, n = 3). These light iron isotope compositions support previous ideas, based on sediment porewater analyses, suggesting that sedimentary iron reduction fractionates iron isotopes and produces an isotopically light iron pool that is transferred to the ocean water column. In sum, our data suggest that continental shelves may export a higher efflux of iron than previously hypothesized, with the likelihood that along river-dominated margins, the benthic iron flux could well be orders of magnitude larger than non-river dominated shelves. The close proximity of the continental shelf benthos to the productive surface ocean means that this flux is likely to be essential for maintaining ecosystem micronutrient supply.  相似文献   
69.
Iron isotope compositions in marine pore fluids and sedimentary solid phases were measured at two sites along the California continental margin, where isotope compositions range from δ56Fe = −3.0‰ to +0.4‰. At one site near Monterey Canyon off central California, organic matter oxidation likely proceeds through a number of diagenetic pathways that include significant dissimilatory iron reduction (DIR) and bacterial sulfate reduction, whereas at our other site in the Santa Barbara basin DIR appears to be comparatively small, and production of sulfides (FeS and pyrite) was extensive. The largest range in Fe isotope compositions is observed for Fe(II)aq in porewaters, which generally have the lowest δ56Fe values (minimum: −3.0‰) near the sediment surface, and increase with burial depth. δ56Fe values for FeS inferred from HCl extractions vary between ∼−0.4‰ and +0.4‰, but pyrite is similar at both stations, where an average δ56Fe value of −0.8 ± 0.2‰ was measured. We interpret variations in dissolved Fe isotope compositions to be best explained by open-system behavior that involves extensive recycling of Feflux. This study is the first to examine Fe isotope variations in modern marine sediments, and the results show that Fe isotopes in the various reactive Fe pools undergo isotopic fractionation during early diagenesis. Importantly, processes dominated by sulfide formation produce high-δ56Fe values for porewaters, whereas the opposite occurs when Fe(III)-oxides are present and DIR is a major pathway of organic carbon respiration. Because shelf pore fluids may carry a negative δ56Fe signature it is possible that the Fe isotope composition of ocean water reflects a significant contribution of shelf-derived iron to the open ocean. Such a signature would be an important means for tracing iron sources to the ocean and water mass circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号