首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   4篇
测绘学   33篇
大气科学   21篇
地球物理   42篇
地质学   89篇
海洋学   19篇
天文学   114篇
自然地理   10篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   15篇
  2017年   10篇
  2016年   15篇
  2015年   6篇
  2014年   11篇
  2013年   21篇
  2012年   13篇
  2011年   18篇
  2010年   12篇
  2009年   12篇
  2008年   16篇
  2007年   15篇
  2006年   19篇
  2005年   12篇
  2004年   8篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有328条查询结果,搜索用时 31 毫秒
321.
322.
Himalayan glaciers and their mass balance are poorly sampled through direct mass balance measurements. Thus, based on Landsat datasets of ETM+ (2000), ETM+ (2006) and TM (2011), mass balance studies of 32 glaciers was carried out using accumulation area ratio (AAR) method in the Tirungkhad river basin, a tributary of Satluj River, located in western Himalayan region. The overall specific mass balance was negative varying from ?27 cm (2000) to ?41 cm (2011). Out of 32 glaciers, 27 glaciers (81.2 %) showed negative mean mass balance and 5 glaciers (18.7 %) showed positive mean mass balance. Mean of specific mass balance for the year 2000, 2006 and 2011 was found to be ?48 cm, ?55 cm and ?0.61 cm respectively, in case of glaciers with negative mass balance while in case of glaciers with positive mass balance, it was 0.67 cm (2000), 0.56 cm (2006) and 0.47 cm (2011). The investigations suggested a loss of ?0.034 km3 of glacial ice for 2000, 0.036 km3 for 2006 and 0.038 km3 for 2011 respectively. The negative mass balance of the glaciers since 2000 correlates well with the increasing trend of annual mean temperature and decreasing trend of precipitation (snow water equivalent (SWE) and rainfall). Based on Mann Kendall test the temperature and SWE trends were significant at 95 % confidence level, however, the rainfall trend was insignificant.  相似文献   
323.
Arrival time of particles in an extensive air shower (EAS) is a key physical parameter to determine its direction. EAS direction is useful for studies of anisotropy and composition of cosmic rays, and search for multi-TeV γ-rays sources. Accurate timing may be used to search exotic phenomena such as production of new particles at extremely high energies available during early stages of development of EAS and also for detecting sub-relativistic hadrons in EAS. Time to digital converters (TDCs) are used to perform this task. Traditional TDCs operate in the START-STOP mode with limited dynamic range and single-hit capability. With the advent of high luminosity collider LHC, need for TDCs with large dynamic range, multi-hit capability and TRIGGERED mode of operation became necessary. A 32 channel TDC was designed for the GRAPES-3 experiment on a CAMAC platform around TDC32, an ASIC developed by micro-electronics group at CERN, Geneva. Four modules were operated in the GRAPES-3 experiment. Here, we present details of the circuit design and their performance over several years. The multi-hit feature of this device was used to study the time structure of particles in the EAS on time scale of ~1 μs. The distribution of time intervals in the multi-hit data shows an exponential profile with a time constant of ~370 ns. These delayed particles are likely to be neutrons produced in the EAS core that were recorded in the scintillator detectors following the relativistic EAS front.  相似文献   
324.
A depth-averaged numerical model has been developed to study tidal circulation and suspended sediment transport in the Gulf of Kachchh including Kandla creek, west coast of India. The resolution of the model is taken as 750 m × 750 m, which is found to be adequate for the gulf region. However, this resolution could not produce the realistic circulation pattern and suspended sediment concentration in the Kandla creek region. There is a major seaport at Kandla which serves as the sea gate to northwest India. Therefore, a 2-D fine resolution (75 m × 75 m) model for Kandla creek has been developed and coupled with the coarser gulf model to compute the flow features in the creek region. The model dynamics and basic formulation remain the same for both the gulf model and the creek model. The models are barotropic, based on shallow water equations, and neglect horizontal diffusion and wind stress terms in the momentum equations. The models are fully nonlinear and use a semiexplicit finite difference scheme to solve mass, momentum, and advection-diffusion equations in a horizontal plane. The tide in the gulf is represented in the model by the semidiurnal M2 constituent mainly. In this study, no fresh water discharge conditions have been considered so the results are appropriate for the dry season. Numerical experiments are carried out to study the circulation and suspended sediment concentrations in the gulf and the creek regions. The computed results are validated with the available observations.  相似文献   
325.
The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading up to orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C′ and C″ antithetic shear bands, Type A s-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals, especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300 and 500°C in the upper greenschist facies, and appear to have been evolved during exhumation as a consequence of oblique strike-slip movements along the Karakoram shear zone.  相似文献   
326.
Drought is a serious climatic condition that affects nearly all climatic zones worldwide, with semi-arid regions being especially susceptible to drought conditions because of their low annual precipitation and sensitivity to climate changes. Drought indices such as the standardized precipitation index (SPI) using meteorological data and vegetation indices from satellite data were developed for quantifying drought conditions. Remote sensing of semi-arid vegetation can provide vegetation indices which can be used to link drought conditions when correlated with various meteorological data based drought indices. The present study was carried out for drought monitoring for three districts namely Bhilwara, Kota and Udaipur of Rajasthan state in India using SPI, normalized difference vegetation index (NDVI), water supply vegetation index (WSVI) and vegetation condition index (VCI) derived from the Advanced Very High resolution Radiometer (AVHRR). The SPI was computed at different time scales of 1, 2, 3, 6, 9 and 12 months using monthly rainfall data. The NDVI and WSVI were correlated to the SPI and it was observed that for the three stations, the correlation coefficient was high for different time scales. Bhilwara district having the best correlation for the 9-month time scale shows late response while Kota district having the best correlation for 1-month shows fast response. On the basis of the SPI analysis, it was found that the area was worst affected by drought in the year 2002. This was validated on the basis of NDVI, WSVI and VCI. The study clearly shows that integrated analysis of ground measured data and satellite data has a great potential in drought monitoring.  相似文献   
327.
This work provides unequivocal evidence of the existence of Mesoarchean granulite facies metamorphic event in the Palghat-Cauvery Shear Zone (PCSZ) of South India. Charnockite samples from two prominent hills at Kollaimalai (KM) and Pachchaimalai (PM) as well as from two quarries within the Bhavani Shear Zone (BSZ) have been analyzed for their Sm-Nd and Rb-Sr ages to investigate the existence or otherwise of the Archean granulite facies events within the PCSZ. The Rb-Sr whole-rock isochron ages for massive charnockites from both the hills appear to be contemporaneous at 2.9 Ga with the initial Sr isotopic ratios of 0.7012 and 0.7014, respectively. However, the Rb-Sr data for whole-rock samples of basic granulites from one of the quarries within the BSZ indicate open system behavior, while the charnockites from the other quarry have insufficient spread in 87Rb/86Sr ratios and do not yield any isochron. The Sm-Nd data, on the other hand, do not distinguish between the massive charnockite and the lowland charnockite and yield Depleted Mantle model ages in the range 2.98±0.3 Ga for all of them. The ɛT CHUR for all of these rocks are highly positive. Both the Sr isotopic ratios and positive ɛT CHUR values for these rocks strongly suggest a mantle source for all of them. An upper age limit of ∼3.28 Ga may be assigned to the crustal accretion of the protolith of all these rocks on the basis of their Nd model ages. The Rb-Sr isochron ages of 2.9 Ga for the two massifs could be the age of granulite facies metamorphism. Thus, the metamorphism in the KM and PM Hills took place within ∼100 Ma of crustal accretion of these rocks and probably was part of the same geological event of crust formation and metamorphism. The open system behavior with respect to Rb-Sr isotopes in the basic granulite from Bhavani is possibly due to the migration of Sr isotopes, triggered during the later shearing of these rocks.  相似文献   
328.
A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we demonstrate how a model simulation of multiple tracers and utilization of a variety of observational data help us to obtain additional information about the parameterization of ocean circulation and air–sea gas exchange, relative to approaches that use only a single tracer. The benefit of using multiple tracers is based on the fact that individual tracer holds unique information with regard to ocean mixing, circulation, and air–sea gas exchange. In a previous modeling study, we have shown that the simulation of radiocarbon enables us to identify the importance of parameterizing sub-grid scale ocean mixing processes in terms of diffusive mixing along constant density surface (isopycnal mixing) and the inclusion of the effect of mesoscale eddies. In this study we show that the simulation of phosphate, a major macronutrient in the ocean, helps us to detect a weak isopycnal mixing in the upper ocean that does not show up in the radiocarbon simulation. We also show that the simulation of chlorofluorocarbons (CFCs) reveals excessive upwelling in the Southern Ocean, which is also not apparent in radiocarbon simulations. Furthermore, the updated ocean inventory data of man-made radiocarbon produced by nuclear tests (bomb 14C) enable us to recalibrate the rate of air–sea gas exchange. The progressive modifications made in the model based on the simulation of additional tracers and utilization of updated observational data overall improve the model’s ability to simulate ocean circulation and air–sea gas exchange, particularly in the Southern Ocean, and has great consequence for projected CO2 uptake. Simulated global ocean uptake of anthropogenic CO2 from pre-industrial time to the present day by both previous and updated models are within the range of observational-based estimates, but with substantial regional difference, especially in the Southern Ocean. By year 2100, the updated model estimated CO2 uptake are 531 and 133 PgC (1PgC?=?1015 gram carbon) for the global and Southern Ocean respectively, whereas the previous version model estimated values are 540 and 190 PgC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号