Typhoon Lionrock, also known as the national number 1610 in Japan, caused severe flooding in east Japan in August 28–31, 2016, leaving a death toll of 22. With a maximum sustained wind speed of ~?220 km/h from the Joint Typhoon Warning Center’s best track, Lionrock was classified as a category 4 hurricane in Saffir–Simpson Hurricane Wind Scale and as a typhoon in Japan Meteorological Agency’s scale. Lionrock was among unique typhoons as it started its landfall from north of Japan. Here, we studied the characteristics of this typhoon through tide gauge data analysis, field surveys and numerical modeling. Tide gauge analysis showed that the surges generated by Lionrock were in the ranges of 15–55 cm with surge duration of 0.8–3.1 days. Our field surveys revealed that the damage to coastal communities/structures was moderate although it caused severe flooding inland. We measured a maximum coastal wave runup of 4.3 m in Iwaisaki. Such a runup was smaller than that generated by other category 4 typhoons hitting Japan in the past. Our numerical model was able to reproduce the storm surge generated by the 2016 Typhoon Lionrock. This validated numerical model can be used in the future for typhoon-hazard studies along the coast of northeastern Japan. Despite relatively small surge/wave runups in coastal areas, Lionrock’s death toll was more than that of some other category 4 typhoons. We attribute this to various primary (e.g., flooding, surges, waves, strong winds) and secondary (e.g., landslides, coastal erosions, debris flows, wind-blown debris) mechanisms and their combinations and interactions that contribute to damage/death during a typhoon event.
Intact soils cores were taken with a stainless steel corer from a sandy podzol and a loamy luvisol, and used to measure the flux (J) of NO between soil and atmosphere and the vertical profile of the NO mixing ratios (m) in the soil atmosphere, both as function of the NO mixing ratio (ma) in the atmosphere of the headspace. These measurements were repeated after stepwise excavation of the soil column from the top, e.g. by removing the upper 2 cm soil layer. The gaseous diffusion coefficients of NO in the soil cores were either computed from soil porosity or were determined from experiments using SF6. The NO fluxes (J) that were actually measured at the soil surface were compared to the fluxes which were calculated either from the vertical NO profiles (Jc) or from the NO production and uptake rates (Jm) determined in the excavated soil samples. In the podzol, the actually measured (J) and the calculated (Jm, Jm) NO fluxes agreed within a factor of 2. In the luvisol, the measured NO fluxes (J) and those calculated from the vertical NO profiles (Jc) also agreed well, but in the upper 6 cm soil layer the NO fluxes (Jm) calculated from NO production and uptake rates were up to 7 times higher than the measured NO fluxes. This poor agreement was probably due to the inhomogeneous distribution of NO production and consumption processes and the change of diffusivities within the top layers of the luvisol. Indeed, the luvisol showed a pronounced maximum of the NO mixing ratios at about 6 cm depth, whereas the podzol column exhibited a steady and exponential decrease of the NO mixing ratios with depth. The inhomogeneities in the luvisol were confirmed by incubation of the soil cores under anoxic conditions. This treatment resulted in production of NO at several depths indicating a zonation of increased potential activities within the luvisol profile which may have biased the modelling of the NO surface flux from turnover measurements in soil samples. Inhomogeneities could be achieved even in homogenized soil by fertilization with nitrate solution. 相似文献
The present study documents the results of an inter-disciplinary model project that was planned with the aim of developing an innovative winter covering system for marble statuaries located on the Schlossbrücke (Berlin). Such a system would need to fulfil the various requirements for structural stability, aesthetics, climate and practical use. This applied research represents the first complex scientific study of the sustainability of a winter covering system. The study is characterised by the use of complex scientific instruments such as special laboratory analysis and numerical simulation tools. The interaction between the environment and the artefacts in connection with the innovative winter covering structures were studied by extensive climatic monitoring. 相似文献
Significant efforts have been expended for improved characterization of hydraulic conductivity (K) and specific storage (Ss) to better understand groundwater flow and contaminant transport processes. Conventional methods including grain size analyses (GSA), permeameter, slug, and pumping tests have been utilized extensively, while Direct Push-based Hydraulic Profiling Tool (HPT) surveys have been developed to obtain high-resolution K estimates. Moreover, inverse modeling approaches based on geology-based zonations, and highly parameterized Hydraulic Tomography (HT) have also been advanced to map spatial variations of K and Ss between and beyond boreholes. While different methods are available, it is unclear which one yields K estimates that are most useful for high resolution predictions of groundwater flow. Therefore, the main objective of this study is to evaluate various K estimates at a highly heterogeneous field site obtained with three categories of characterization techniques including: (1) conventional methods (GSA, permeameter, and slug tests); (2) HPT surveys; and (3) inverse modeling based on geology-based zonations and highly parameterized approaches. The performance of each approach is first qualitatively analyzed by comparing K estimates to site geology. Then, steady-state and transient groundwater flow models are employed to quantitatively assess various K estimates by simulating pumping tests not used for parameter estimation. Results reveal that inverse modeling approaches yield the best drawdown predictions under both steady and transient conditions. In contrast, conventional methods and HPT surveys yield biased predictions. Based on our research, it appears that inverse modeling and data fusion are necessary steps in predicting accurate groundwater flow behavior. 相似文献
Subsurface heterogeneity is one of the largest sources of uncertainty associated with saturated hydraulic conductivity. Recent work has demonstrated that uncertainty in hydraulic conductivity can impart significant uncertainty in runoff generation processes and surface-water flow. Here, the role of site characterization in reducing hydrograph prediction bias and uncertainty is demonstrated. A fully integrated hydrologic model is used to conduct two sets of stochastic, transient simulation experiments comprising different overland flow mechanisms: Dunne and Hortonian. Conditioning hydraulic conductivity fields using values drawn from a simulated synthetic control case are shown to reduce both mean bias and variance in an ensemble of conditional hydrograph predictions when compared with the control case. The ensemble simulations show a greater reduction in uncertainty in the hydrographs for Hortonian flow. The conditional simulations predict surface ponding and surface pressure distributions with reduced mean error and reduced root mean square error compared with unconditional simulations. Uncertainty reduction in Hortonian and Dunne flow cases demonstrates different temporal signals, with more substantial reduction achieved for Hortonian flow. 相似文献