首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   10篇
  国内免费   2篇
测绘学   11篇
大气科学   22篇
地球物理   95篇
地质学   182篇
海洋学   33篇
天文学   82篇
综合类   2篇
自然地理   63篇
  2021年   9篇
  2020年   11篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   12篇
  2015年   6篇
  2014年   10篇
  2013年   27篇
  2012年   16篇
  2011年   8篇
  2010年   16篇
  2009年   27篇
  2008年   14篇
  2007年   15篇
  2006年   17篇
  2005年   13篇
  2004年   11篇
  2003年   13篇
  2002年   18篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1992年   8篇
  1989年   4篇
  1988年   9篇
  1987年   4篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1977年   7篇
  1976年   10篇
  1975年   10篇
  1974年   6篇
  1973年   8篇
  1970年   5篇
  1962年   4篇
  1961年   3篇
  1960年   6篇
  1959年   4篇
  1956年   3篇
  1955年   4篇
  1952年   3篇
  1940年   3篇
  1937年   4篇
  1936年   3篇
排序方式: 共有490条查询结果,搜索用时 31 毫秒
171.
Solar microwave burst observations (made with the WSRT) with high time and high spatial resolution show large-scale (> 8000 km) short-period (1.5 s) modulations of the source. It is argued that an interpretation in terms of Alfvén oscillations in the microwave source is ruled out by this observation. Instead it must be the source of the fast electrons, that produce the microwaves, that is oscillating. The fluctuating acceleration region is identified with a volume where a sheared field is compressed against a flux tube by an unstable current. MHD oscillations in the overlying fluxtube are caused by the pushing force. The rapidly expanding current plays a major role in the flare theory of van Tend and Kuperus (1978).  相似文献   
172.
We present 1.25-19 μm infrared spectra of pure solid CH4 and H2O/CH4=87, 20, and 3 solid mixtures at temperatures from 15 to 150 K. We compare and contrast the absorptions of CH4 in solid H2O with those of pure CH4. Changes in selected peak positions, profiles, and relative strength with temperature are presented, and absolute strengths for absorptions of CH4 in solid H2O are estimated. Using the two largest (ν3+ν4) and (ν1+ν4) near-IR absorptions of CH4 at 2.324 and 2.377 μm (4303 and 4207 cm−1), respectively, as examples, we show that peaks of CH4 in solid H2O are at slightly shorter wavelength (higher frequency) and broader than those of pure solid CH4. With increasing temperature, these peaks shift to higher frequency and become increasingly broad, but this trend is reversible on re-cooling, even though the phase transitions of H2O are irreversible. It is to be hoped that these observations of changes in the positions, profiles, and relative intensities of CH4 absorptions with concentration and temperature will be of use in understanding spectra of icy outer Solar System bodies.  相似文献   
173.
174.
Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z = 3, when the universe was still in its ‘teen years’. I illustrate recent progress in this field with the latest observations of the gravitationally lensed galaxy MS 1512- cB58. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
175.
We present RHEA, a compact and inexpensive single-mode spectrograph which is built to exploit the capabilities of modest-sized telescopes in an economic way. The instrument is fed by up to seven optical waveguides with the aim of achieving an efficient and modal-noise-free unit, suitable for attaining extreme Doppler precision. The cross-dispersed layout features a wavelength coverage from 430–650 nm, with spectral resolution of R ~75,000. When coupled to small telescopes using fast tip/tilt control, our instrument is well-suited to sensitive spectroscopy. Example science cases are accurate radial velocity studies of low to intermediate-mass giant stars with the purpose of searching for giant plants and using asteroseismology to simultaneously measure the host star parameters. In this paper we describe the final instrument design and present first results from testing the internal stability.  相似文献   
176.
Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt.  相似文献   
177.
We present field relationships, petrography, and mineral major and trace element data for the Neoproterozoic Dariv Igneous Complex of the Altaids of Western Mongolia. This unique complex of high-K plutonic rocks is composed of well-exposed, km-scale igneous intrusions of wehrlites, phlogopite wehrlites, apatite-bearing phlogopite clinopyroxenites, monzogabbros, monzodiorites, and clinopyroxene-bearing monzonites, all of which are intruded by late stage lamprophyric and aplitic dikes. The biotite-dominated igneous complex intrudes depleted harzburgitic serpentinite. The observed lithological variability and petrographic observations suggest that the plutonic rocks can be ascribed to a fractionation sequence defined by olivine + clinopyroxene ± Fe–Ti oxides → phlogopite + apatite → K-feldspar + plagioclase → amphibole + quartz. Notably, phlogopite is the dominant hydrous mafic mineral. Petrogenesis of the observed lithologies through a common fractionation sequence is supported by a gradual decrease in the Mg# [molar Mg/(Fetotal + Mg) × 100] of mafic minerals. Crystallization conditions are derived from experimental phase petrology and mineral chemistry. The most primitive ultramafic cumulates crystallized at ≤0.5 GPa and 1,210–1,100 °C and oxygen fugacity (fO2) of +2–3 ?FMQ (log units above the fayalite–quartz–magnetite buffer). Trace element modeling using clinopyroxene and apatite rare earth element compositions indicates that the dominant mechanism of differentiation was fractional crystallization. The trace element composition of a parental melt was calculated from primitive clinopyroxene compositions and compares favorably with the compositions of syn-magmatic lamprophyres that crosscut the fractionation sequence. The parental melt composition is highly enriched in Th, U, large ion lithophile elements, and light rare earth elements and has a pronounced negative Nb–Ta depletion, suggestive of an alkaline primitive melt originating from a subduction-imprinted mantle. Comparison with a global compilation of primitive arc melts demonstrates that Dariv primitive melts are similar in composition to high-K primitive melts found in some continental arcs. Thus, the high-K fractionation sequence exposed in the Dariv Igneous Complex may be a previously unrecognized important fractionation sequence resulting in alkali-rich upper crustal granitoids in continental arc settings.  相似文献   
178.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   
179.
Paleolimnological data from varved sediments in Lake Holzmaar (Eifel, Germany) were combined with documentary data on human activities, long-term data from the Historical Climate Database (HISKLID) for Germany and with recent monitoring data to evaluate changes in deposition that arose from climatic and human influences. The sediment data included seasonal layer thickness in an established varve chronology (1608–1942 AD), subannual chemical element counts, and multiannual organic matter data (TOC, TN, δ13Corg), all combined on an annual scale. Indicators for detritus deposition (lithogenic element counts and detritus layers) determined the first principal component (PC1) of the sediment data. This detritus PC1 was compared to the first PCs of the seasonal precipitation and temperature from HISKLID. While no relation was found to precipitation, the correlation with the temperature PC1 determined by spring to fall temperatures was significant. From 1608 to 1870, a positive correlation of the PCs suggests an increase of detritus deposition in the lake center with increasing non-winter temperatures. These may be linked by lake-internal sediment redeposition that increases when the periods of winter stratification become shorter and that of lake circulation longer. The detritus deposition is modulated by external detritus input depending on the intensity of erosion-conducive land use (wood pasture, wood cutting, and rotational slash-and-burn cultivation). Detritus input diminished when land use slowed down with population decrease as the consequence of plague epidemics, warfare and emigration. After 1870, forest regeneration and improving agricultural practices led to a stabilization of the catchment. Erosion and detritus deposition decreased progressively. The negative correlation of detritus deposition with the gradually increasing temperature presumably mimics a cause-effect relation, although a link with decreasing freeze–thaw action is possible. The modernization of agriculture proceeded with manuring and fertilizing, which caused an increase of lake productivity as indicated by summer blooms of diatoms with enhanced nutrient demand, increased δ13Corg values and sulfur concentrations. Within this well established data base we found combinations of criteria that may be used to deduce natural climatic or anthropogenic influences. The quantitative attribution of these influences remains a challenging task in paleolimnology because their interaction makes the detection of linking mechanisms difficult even at high degree of detail and the processes themselves remain debatable.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号