首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   10篇
  国内免费   1篇
测绘学   5篇
大气科学   10篇
地球物理   65篇
地质学   87篇
海洋学   18篇
天文学   26篇
自然地理   17篇
  2020年   10篇
  2019年   3篇
  2018年   9篇
  2017年   10篇
  2016年   14篇
  2015年   7篇
  2014年   9篇
  2013年   5篇
  2012年   13篇
  2011年   8篇
  2010年   11篇
  2009年   10篇
  2008年   11篇
  2007年   13篇
  2006年   5篇
  2005年   9篇
  2004年   3篇
  2003年   7篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
201.
Every year, landslides and floods cause deaths, missing persons, injured people, evacuees, and homeless people. Serious damages to property and pollution are also produced. Lessons learn from landslides and flood disasters recently occurred show that flood and disaster management should be widely improved. This paper deals the problem of hydrogeological risk management from a logistic and a managerial point of view. The hydrological risk management is studied as an industrial process, and it is modeled by the IDEF0 language. The IDEF0 application provides a clear overview of the system and became a structured base for the re-engineering process. For each function of the process, the inputs, outputs, and necessary controls and resources have been identified. The use of the IDEF0 provides a simple and effective tool for the decision-making process. Starting from a realistic and efficient current state model, the process of re-engineering has been implemented. The main aim of the change introduced in the process is to improve the information management that it is a crucial point of the risk management.  相似文献   
202.
Shoreline change is driven by various complex processes interacting at a large range of temporal and spatial scales, making shoreline reconstructions and predictions challenging and uncertain. Despite recent progress in addressing uncertainties related to the physics of sea-level rise, very little effort is made towards understanding and reducing the uncertainties related to wave-driven shoreline response. To fill this gap, the uncertainties associated with the long-term modelling of shoreline change are analysed at a high-energy cross-shore transport dominated site. Using the state-of-the-art LX-Shore shoreline change model, we produce a probabilistic shoreline reconstruction, based on 3000 simulations over the past 20 years at Truc Vert beach, southwest France, whereby sea-level rise rate, depth of closure and three model free parameters are considered uncertain variables. We further address the relative impact of each source of uncertainty on the model results performing a Global Sensitivity Analysis. This analysis shows that the shoreline changes are mainly sensitive to the three parameters of the wave-driven model, but also that the sensitivity to each of these parameters is strongly modulated seasonally and interannually, in relation with wave energy variability, and depends on the time scale of interest. These results have strong implications on the model skill sensitivity to the calibration period as well as for the predictive skill of the model in a context of future climate change affecting wave climate and extremes. © 2020 John Wiley & Sons, Ltd.  相似文献   
203.
The Paris Agreement is the last hope to keep global temperature rise below 2°C. The consensus agrees to holding the increase in global average temperature to well below 2°C above pre-industrial levels, and to aim for 1.5°C. Each Party’s successive nationally determined contribution (NDC) will represent a progression beyond the party’s then current NDC, and reflect its highest possible ambition. Using Ireland as a test case, we show that increased mitigation ambition is required to meet the Paris Agreement goals in contrast to current EU policy goals of an 80–95% reduction by 2050. For the 1.5°C consistent carbon budgets, the technically feasible scenarios' abatement costs rise to greater than €8,100/tCO2 by 2050. The greatest economic impact is in the short term. Annual GDP growth rates in the period to 2020 reduce from 4% to 2.2% in the 1.5°C scenario. While aiming for net zero emissions beyond 2050, investment decisions in the next 5–10 years are critical to prevent carbon lock-in.

Key policy insights

  • Economic growth can be maintained in Ireland while rapidly decarbonizing the energy system.

  • The social cost of carbon needs to be included as standard in valuation of infrastructure investment planning, both by government finance departments and private investors.

  • Technological feasibility is not the limiting factor in achieving rapid deep decarbonization.

  • Immediate increased decarbonization ambition over the next 3–5 years is critical to achieve the Paris Agreement goals, acknowledging the current 80–95% reduction target is not consistent with temperature goals of ‘well below’ 2°C and pursuing 1.5°C.

  • Applying carbon budgets to the energy system results in non-linear CO2 emissions reductions over time, which contrast with current EU policy targets, and the implied optimal climate policy and mitigation investment strategy.

  相似文献   
204.
The study is focusing on the stress and strain inversions from focal mechanisms in a revised seismotectonic zonation of northeastern Italy and western Slovenia. The recent increase of monitoring capability of the local seismic network, the updated geological-structural model of the area, and the novelties emerged from studies on the spatial organization of the seismicity allowed a redefinition of the seismotectonic zones. The stress and strain tensors inversion is inferred from 203 focal mechanisms, corresponding to earthquakes occurred between 1984 and 2016 with coda-duration magnitude range from 2.0 to 5.6. The inverted stress domains reveal an articulated picture of the interaction of the Adria microplate with the Eurasian plate. A dominant strike-slip stress field characterizes the eastern part of the area, while the seismotectonic zones of the central part are undergoing to thrusting regime. The stress pattern inferred in the western part of the study area outlines a complex picture with prevailing strike-slip regime and dominant compression only in a seismotectonic zone. The comparison of stress and strain tensor orientations evidences a relative uniformity of the crustal strength in the eastern and northwestern zones of the study area. The central and western zones appear to be characterized by planes of mechanical weakness not favorably oriented for failure with respect to the stress tensor.  相似文献   
205.
Marginal wharves are key components in providing functionality of port facilities. Ports are central components of the US economy. Earthquake damage to a port can disrupt the economic stability. Therefore, port facilities must be able to quickly return to full operation shortly after a seismic event. Prior studies have shown that integrity of marginal wharves may be compromised by excessive soil movement and structural damage. The latter is often localized at pile‐to‐wharf connections and in the pile body buried within the soil. Recent research has resulted in an improved connection design that mitigates damage. This study was undertaken to evaluate the full seismic performance of marginal wharves including both conventional and damage‐resisting connections. A series of finite element models of a representative pile‐supported wharf facility were created. The models varied in their moment‐resisting pile‐to‐wharf connections. A total‐stress analysis approach was used to capture the soil response along with py, tz, and Qz soil–structure interaction springs. Validated connection interface elements were integrated with non‐linear frame elements to simulate the marginal wharf structure and substructure. Non‐linear static pushover and dynamic time history analyses, for three different hazard levels, were performed. The results of the numerical simulations were used to assess the performance of the marginal wharf including estimates of crane damage and port downtime. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
206.
Inter‐story isolation, an effective strategy for mitigating the seismic risk of both new and existing buildings, has gained more and more interest in recent years as alternative to base isolation, whenever the latter results to be impractical, technically difficult or uneconomic. As suggested by the name, the technique consists in inserting flexible isolators at floor levels other than the base along the height of a multi‐story building, thus realizing a non‐conventional Tuned Mass Damper (TMD). Consistent with this, an optimal design methodology is developed in the present paper with the objective of achieving the global protection of both the structural portions separated by the inter‐story isolation system, that is, the lower portion (below the isolation system) and the isolated upper portion (above the isolation system). The optimization procedure is formulated on the basis of an energy performance criterion that consists in maximizing the ratio between the energy dissipated in the isolation system and the input energy globally transferred to the entire structure. Numerical simulations, performed under natural accelerograms with different frequency content and considering increasing isolation levels along the height of a reference frame structure, are used to investigate the seismic performance of the optimized inter‐story isolation systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
207.
208.
209.
In September 2001, an extensive active-seismic investigation (Serapis experiment) was carried out in the Gulfs of Naples and Pozzuoli, with the aim of investigating and reconstructing the shallow crustal structure of the Campi Flegrei caldera, and possibly identifying its feeding system at depth. The present study provides a joint analysis of the very shallow seismic reflection data and tomographic images based on the Serapis dataset. This is achieved by reflection seismic sections obtained by the 3D data gathering and through refined P-velocity images of the shallowest layer of Pozzuoli Gulf (z < 1,000 m). From the refined Vp model, the overall picture of the velocity distribution confirms the presence of a complex arc-shaped anomaly that borders the bay offshore. The deeper part of the anomaly (beneath 700 m, with Vp > 3,500 m/s) correlates with units made up of agglomerate tuffs and interbedded lava, which form the southern edge of the caldera, which was probably formed following the two large ignimbritic eruptions that marked the evolutionary history of the area under study. The upper part of the anomaly that tends to split into two parallel arcs is correlated with dikes, volcanic mounds and hydrothermal alteration zones noted in previous shallow reflection seismic analyses. The depth of the transition between the upper and lower parts of the anomaly is characterized by an abrupt Vp increase on the one-dimensional (1D) profiles extracted from the 3D tomographic model and by the presence of a strong reflector located at about 0.6/0.7 s Two Way Time (TWT) on Common Mid Point gathers. The move-out velocity analysis and stack of the P–P and P–S reflections at the layer bottom allowed to estimate relatively high Vp/Vs values (3.7 ± 0.9). This hypothesis has been tested by a theoretical rock physical modeling of the Vp/Vs ratio as a function of porosity suggesting that the shallow layer is likely formed by incoherent, water saturated, volcanic and marine sediments that filled Pozzuoli Bay during the post-caldera activity.  相似文献   
210.
To double the capacity of the Orte?CFalconara railway line (central Italy), the Santa Croce tunnel was constructed (1985?C1995), which runs between the Nera Montoro and Narni stations. In the same period, to double the capacity of the Ancona?CBari railway line, the Moro, Cintioni, S. Giovanni and Diavolo tunnels were constructed between the Ortona and Casalbordino stations. The high likelihood of intercepting a significant volume of groundwater in calcareous rocks of the Santa Croce tunnel led to a shift in the layout of the tunnel, which allowed construction of the tunnel by more rapid and less expensive means. Groundwater along the Moro tunnel layout, in a sandy aquifer, has been drained by the excavation of a preliminary tunnel, which allowed a discharge of up to 0.080?m3/s. In the S. Giovanni and Diavolo tunnels, a particular hydrogeological setting was found to exist in the form of lens-shaped bodies of fine grey sand-and-silt aquitards intercalated between the bottom muddy-sandy deposits (very low permeability) and the sandy aquifer; this caused sudden groundwater inflow and tunnel collapse. The S. Giovanni tunnnel, excavation was completed using the HydroShield system, whereas in the Diavolo tunnel, a well-point system was adopted, which avoided any environmental hazards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号