首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2380篇
  免费   122篇
  国内免费   16篇
测绘学   77篇
大气科学   311篇
地球物理   643篇
地质学   879篇
海洋学   123篇
天文学   322篇
综合类   5篇
自然地理   158篇
  2021年   42篇
  2020年   35篇
  2019年   35篇
  2018年   100篇
  2017年   103篇
  2016年   126篇
  2015年   95篇
  2014年   109篇
  2013年   171篇
  2012年   85篇
  2011年   92篇
  2010年   106篇
  2009年   121篇
  2008年   77篇
  2007年   84篇
  2006年   70篇
  2005年   51篇
  2004年   35篇
  2003年   52篇
  2002年   63篇
  2001年   44篇
  2000年   44篇
  1999年   31篇
  1998年   27篇
  1997年   41篇
  1996年   29篇
  1995年   34篇
  1994年   31篇
  1993年   22篇
  1991年   24篇
  1990年   24篇
  1988年   17篇
  1987年   20篇
  1985年   18篇
  1984年   20篇
  1983年   25篇
  1982年   22篇
  1981年   21篇
  1980年   19篇
  1979年   17篇
  1978年   20篇
  1977年   19篇
  1976年   15篇
  1975年   17篇
  1974年   19篇
  1973年   21篇
  1972年   17篇
  1970年   13篇
  1968年   13篇
  1965年   15篇
排序方式: 共有2518条查询结果,搜索用时 62 毫秒
51.
The Eder unit in the Carnic Alps, which is situated immediately south of the Periadriatic lineament (PL), represents a fault-bounded block consisting of a low-grade (up to 400?°C, indicated by epizonal illite “crystallinity” values, recrystallized quartz, and non-recrystallized white mica) metamorphic Paleozoic metasedimentary sequence. Until now, it has been assumed to represent a separate Variscan nappe. The rocks of the Eder unit show a strong E- to W-oriented stretching lineation on steep foliation planes (D1) subparallel to the PL. D1 structures originated near the temperature peak of metamorphism, and shear sense indicators show dextral ductile shear parallel to the PL. Tight mesoscale D2 folds formed on the cooling path. K–Ar and Ar–Ar ages from newly formed white mica cluster around 32–28 and 18–13 Ma and suggest a two-stage Tertiary history of the Eder unit. We interpret the Eder unit as a fault-bounded block formed during Oligocene large-scale dextral shearing along the PL (near Tmax) and exhumed in mid-Miocene times during another phase of activity along the PL. Its nature as a separate Variscan nappe is questioned.  相似文献   
52.
A new method for solving the transport equation based on the management of a large numbe of particles in a discretized 2-D domain is presented. The method uses numerical variables to represent the number of particles in a given mesh and is more complex than the 1-D problem. The first part of the paper focuses on the specific management of particles in a 2-D problem. The method also would be valid for three dimensions as long as the medium can be modeled similar to a layered system. As the particles are no longer tracked individually, the algorithm is fast and does not depend on the number of particles present. The numerical tests show that the method is nearly numerical dispersion free and permits accurate calculations even for simulations of low-concentration transport. Because each mesh is considered as a closed system between two successive time steps, it is easy to add adsorption phenomenon without any problem of numerical stability. The model is tested under conditions that are extremely demanding for its operating mode and gives a good fit to analytical solutions. The conditions in which it can be used to best advantage are discussed.  相似文献   
53.
The 1500-m-thick marine strata of the Tethys Himalaya of the Zhepure Mountain (Tingri, Tibet) comprise the Upper Albian to Eocene and represent the sedimentary development of the passive northern continental margin of the Indian plate. Investigations of foraminifera have led to a detailed biozonation which is compared with the west Tethyan record. Five stratigraphic units can be distinguished: The Gamba group (Upper Albian - Lower Santonian) represents the development from a basin and slope to an outer-shelf environment. In the following Zhepure Shanbei formation (Lower Santonian - Middle Maastrichtian), outer-shelf deposits continue. Pebbles in the top layers point to beginning redeposition on a continental slope. Intensified redeposition continues within the Zhepure Shanpo formation (Middle Maastrichtian - Lower Paleocene). The series is capped by sandstones of the Jidula formation (Danian) deposited from a seaward prograding delta plain. The overall succession of these units represents a sea-level high at the Cenomanian/Turonian boundary followed, from the Turonian to Danian, by an overall shallowing-upward megasequence. This is followed by a final transgression — regression cycle during the Paleocene and Eocene, documented in the Zhepure Shan formation (?Upper Danian - Lutetian) and by Upper Eocene continental deposits. The section represents the narrowing and closure of the Tethys as a result of the convergence between northward-drifting India and Eurasia. The plate collision started in the Lower Maastrichtian and caused rapid changes in sedimentation patterns affected by tectonic subsidence and uplift. Stronger subsidence and deposition took place from the Middle Maastrichtian to the Lower Paleocene. The final closure of remnant Tethys in the Tingri area took place in the Lutetian.  相似文献   
54.
The Silurian of Gotland, Sweden, consists of 440 m of carbonate deposits. Repeatedly, uniform sequences of micritic limestones and marls are interrupted by complex-structured reefs and by adjacent platform sediments. Generally, the alteration of facies is interpreted as the result of sea-level fluctuations caused by a gradual regression with superimposed minor transgressive pulses. The purpose of this study is a facies interpretation based on both field observations and stable isotope measurements of brachiopod shells. Approximately 700 samples from stratigraphically arranged localities in different facies areas have been investigated. The carbon and oxygen isotopes show principally parallel curves and a close relationship to the stratigraphic sequence. Lower values occur in periods dominated by deposition of marly sequences. Higher values are observed in periods dominated by reefs and extended carbonate platforms. The oxygen isotope ratios are interpreted to reflect paleosalinity changes due to varying freshwater input, rather than to paleotemperature. Carbon isotope ratios are believed to have been connected to global changes in the burial of organic carbon in black shales during periods of euxinic deep water conditions. Consequently, the facies succession on Gotland results from global paleoclimatic conditions. Changes in terrigenous input due to different rates of weathering and freshwater runoff, rather than sea-level fluctuations, control the carbonate formation of the Silurian on Gotland.  相似文献   
55.
The Saxothuringian flysch basin, on the north flank of the Central European Variscides, was fed and eventually overthrust by the northwestern, active margin of the Tepla-Barrandian terrane. Clast spectra, mineral composition and isotopic ages of detrital mica and zircon have been analyzed in order to constrain accretion and exhumation of rocks in the orogenic wedge. The earliest clastic sediments preserved are of early Famennian age (ca. 370?Ma). They are exposed immediately to the NW of the suture, and belong to the par-autochthon of the foreland. Besides ultramafic (?ophiolite) material, these rocks contain clasts derived from Early Paleozoic continental slope sediments, originally deposited at the NW margin of the Saxothuringian basin. These findings, together with the paleogeographic position of the Famennian clastics debris on the northwestern passive margin, indicate that the Saxothuringian narrow ocean had been closed by that time. Microprobe analyses of detrital hornblendes suggest derivation from the “Randamphibolit” unit, now present in the middle part of the Saxothuringian allochthon (Münchberg nappes). Detrital zircons of metamorphic rocks formed a little earlier (ca. 380?Ma) indicate rapid recycling at the tectonic front. The middle part of the flysch sequence (ca. early to middle Viséan), both in the par-autochthon and in the allochthon, contains abundant clasts of Paleozoic rocks derived from the northwestern slope and rise, together with debris of Cadomian basement, 500-Ma granitoids and 380?Ma (early Variscan) crystalline rocks. All of these source rocks were still available in the youngest part of the flysch (c. middle to late Viséan), but some clasts record, in addition, accretion of the northwestern shelf. Our findings permit deduction of minimum rates of tectonic shortening well in excess of 10–30?mm per year, and rates of exhumation of ca. 3?mm/a, and possibly more.  相似文献   
56.
Data on the cycling of Cu and Zn in two eutrophic lakes are presented: Lake Greifen that becomes seasonally anoxic in its hypolimnion and Lake Sempach that is aerated during winter and oxygenated during summer. They suggest that hypolimnetic oxygenation 1) enhances the release of copper from the sediment but 2) also accelerates the entrapment and deposition of Cu and Zn by freshly formed Mn- and Fe-oxides.  相似文献   
57.
Summary This paper presents idealized numerical simulations of the valley wind circulation in the Alpine Inn Valley, which are compared with existing data and are used to improve our dynamical understanding of the valley wind. The simulations have been performed with the Penn State/NCAR mesoscale model MM5. They use a high-resolution realistic topography but idealized large-scale conditions without any synoptic forcing to focus on the thermally induced valley wind system. The comparison with the available observations shows that this simplified set-up is sufficient to reproduce the essential features of the valley wind.The results show that the tributaries of the Inn Valley have a considerable impact on the along-valley mass fluxes associated with the valley wind circulation. The upvalley mass flux is found to increase where tributaries enter the Inn Valley from the north, that is, from the direction where the Alpine foreland is located. On the other hand, the upvalley mass flux is reduced at the junctions with southern tributaries because part of the upvalley flow is deflected into these tributaries. For the downvalley flow, the situation is essentially reversed, but the influence of the valley geometry on the flow structure is larger than for the upvalley flow. The most important feature is a lateral valley contraction near the valley exit into the Alpine foreland. It reduces the downvalley mass flux at low levels, so that the wind maximum in the interior of the valley is shifted to a fairly large distance from the ground. North of the valley contraction, however, the downvalley flow strongly accelerates and forms a pronounced low-level jet. A dynamical analysis indicates that this acceleration can be interpreted as a transition from subcritical to supercritical hydraulic flow. Another interesting feature is that the low-level jet maintains its structure for several tenths of kilometres into the Alpine foreland. This appears to be related to the fact that the lateral wind shear on the flanks of the jet is associated with a strong dipole of potential vorticity (PV). Due to the conservation properties of the PV, the downstream advection of the PV dipole leads to the formation of a band-like feature that decays fairly slowly.  相似文献   
58.
Upgrading the Earthquake Catalog of Switzerland (ECOS) included revising the earthquake of 1720. This change has major importance for history and seismology.Although that quake has been the subject of several publications, none was based on critical methods. This re-evaluation of the event is built upon a new and more reliable database established after investigating archives and libraries. Using data from such historical sources, we assigned new site intensities, adopting the criteria established by the European macroseismic scale EMS 98 (Grünthal, 1998).We discovered that the event had been assigned an overestimated intensity, due to interpretation errors in former earthquake catalogs and compilations. We recommend reducing the intensity from I0= VIII to I0= VI (EMS 98). The moment magnitude is given as MW= 4.6. Since the event had been considered the largest for its respective area, downgrading it now will influence the seismic hazard assessment for this region.  相似文献   
59.
A 39-km-long deep seismic reflection profile recorded during two field campaigns in 1996 and 2002 provides a first detailed image of the deep crust at the eastern margin of the Eastern Alps (Austria). The ESE–WNW-trending, low-fold seismic line crosses Austroalpine basement units and extends approximately from 20 km west of the Penninic window group of Rechnitz to 60 km SSE of the Alpine thrust front.The explosive-source seismic data reveals a transparent shallow crust down to 5 km depth, a complexly reflective upper crust and a highly reflective lowermost crust. The upper crust is dominated by three prominent west-dipping packages of high-amplitude subparallel reflections. The upper two of these prominent packages commence at the eastern end of the profile at about 5 and 10 km depth and are interpreted as low-angle normal shear zones related to the Miocene exhumation of the Rechnitz metamorphic core complex. In the western portion of the upper crust, east-dipping and less significant reflections prevail. The lowermost package of these reflections is suggested to represent the overall top of the European crystalline basement.Along the western portion of the line, the lower crust is characterised by a 6–8-km-thick band of high-amplitude reflection lamellae, typically observed in extensional provinces. The Moho can be clearly defined at the base of this band, at approximately 32.5 km depth. Due to insufficient signal penetration, outstanding reflections are missing in the central and eastern portion of the lower crust. We speculate that the result of accompanying gravity measurements and lower crustal sporadic reflections can be interpreted as an indication for a shallower Moho in the east, preferable at about 30.5 km depth.The high reflectivity of the lowermost part of the lower crust and prominent reflection packages in the upper crust, the latter interpreted to represent broad extensional mylonite zones, emphasises the latest extensional processes in accordance with eastward extrusion.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号