首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   14篇
  国内免费   1篇
测绘学   3篇
大气科学   22篇
地球物理   56篇
地质学   57篇
海洋学   15篇
天文学   31篇
自然地理   7篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   8篇
  2016年   14篇
  2015年   9篇
  2014年   16篇
  2013年   15篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   11篇
  2008年   9篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1973年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
81.
Lake margin sedimentary systems have been the subject of only limited study. The cyclic Middle Devonian lacustrine succession of Northern Scotland contains repeated developments of shore zone sandstones and thus provides an ideal location for the study of these units. The cycles comprise deep lake, shallow lake, playa and shore zone facies. Detailed field observations are presented alongside ground penetrating radar data which has aided large‐scale and three‐dimensional characterization of the shore zone sand bodies. Loading and discrete channel forms are recognized in thin‐bedded sandstones within the lower portion of the lake shore zone successions. Up‐section, the sandstone beds appear to become amalgamated, forming subtle low angle accretionary bar complexes. Where imaged on the radar profiles, the repeated development of shoreward migrating features succeeded by more shallow angled lakeward accreting surfaces is recognized; these are ascribed to washover and swash–backwash processes, respectively. The orientation of these features is similar to palaeocurrent measurements from oscillation ripples, suggesting an alignment of the shore zone bars perpendicular to the prevailing wind direction. Further loaded sandstone beds and sand‐filled shallow channel features overlie the bar forms. The context of the shore zone facies allows the controls on its formation to be examined. The shore zone sandstones overlie playa facies which contain abundant desiccation horizons, reflecting the most arid phase in the climatically controlled lacustrine cycle. As climatic conditions ameliorated, the rejuvenation of fluvial systems resulted in the transport of sand out into the basin. Initial deposition was limited to intermittent events where sediment was laid down on a water‐saturated substrate. High resolution fluctuations in lake level resulted in periodic short‐lived reworking events along the lake margins which produced amalgamated sands, forming low relief bars. Shore zone reworking is likely to have occurred over a wide  area as the lake margin migrated back and forth, and gradually transgressed.  相似文献   
82.
Quantifying initial and wind forcing uncertainties in the Gulf of Mexico   总被引:1,自引:0,他引:1  
This study aims at analyzing the combined impact of uncertainties in initial conditions and wind forcing fields in ocean general circulation models (OGCM) using polynomial chaos (PC) expansions. Empirical orthogonal functions (EOF) are used to formulate both spatial perturbations to initial conditions and space-time wind forcing perturbations, namely in the form of a superposition of modal components with uniformly distributed random amplitudes. The forward deterministic HYbrid Coordinate Ocean Model (HYCOM) is used to propagate input uncertainties in the Gulf of Mexico (GoM) in spring 2010, during the Deepwater Horizon oil spill, and to generate the ensemble of model realizations based on which PC surrogate models are constructed for both localized and field quantities of interest (QoIs), focusing specifically on sea surface height (SSH) and mixed layer depth (MLD). These PC surrogate models are constructed using basis pursuit denoising methodology, and their performance is assessed through various statistical measures. A global sensitivity analysis is then performed to quantify the impact of individual modes as well as their interactions. It shows that the local SSH at the edge of the GoM main current—the Loop Current—is mostly sensitive to perturbations of the initial conditions affecting the current front, whereas the local MLD in the area of the Deepwater Horizon oil spill is more sensitive to wind forcing perturbations. At the basin scale, the SSH in the deep GoM is mostly sensitive to initial condition perturbations, while over the shelf it is sensitive to wind forcing perturbations. On the other hand, the basin MLD is almost exclusively sensitive to wind perturbations. For both quantities, the two sources of uncertainty have limited interactions. Finally, the computations indicate that whereas local quantities can exhibit complex behavior that necessitates a large number of realizations, the modal analysis of field sensitivities can be suitably achieved with a moderate size ensemble.  相似文献   
83.
Predicting runoff hot spots and hot‐moments within a headwater crop‐catchment is of the utmost importance to reduce adverse effects on aquatic ecosystems by adapting land use management to control runoff. Reliable predictions of runoff patterns during a crop growing season remain challenging. This is mainly due to the large spatial and temporal variations of topsoil hydraulic properties controlled by complex interactions between weather, growing vegetation, and cropping operations. This interaction can significantly modify runoff patterns and few process‐based models can integrate this evolution of topsoil properties during a crop growing season at the catchment scale. Therefore, the purpose of this study was to better constrain the event‐based hydrological model Limburg Soil Erosion Model by incorporating temporal constraints for input topsoil properties during a crop growing season (LISEM). The results of the temporal constraint strategy (TCS) were compared with a classical event per event calibration strategy (EES) using multi‐scale runoff information (from plot to catchment). The EES and TCS approaches were applied in a loess catchment of 47 ha located 30 km northeast of Strasbourg (Alsace, France). A slight decrease of the Nash–Sutcliffe efficiency criterion on runoff discharge for TCS compared to EES was counterbalanced by a clear improvement of the spatial runoff patterns within the catchment. This study showed that limited agronomical and climatic information added during the calibration step improved the spatial runoff predictions of an event‐based model. Reliable prediction of runoff source, connectivity, and dynamics can then be derived and discussed with stakeholders to identify runoff hot spots and hot‐moments for subsequent land use and crop management modifications.  相似文献   
84.
Classically, geological surveys of water resources in hard-rock aquifers are made from aerial photographs or geophysical techniques that basically permit to detect vertical features. On the other hand, aquifers only linked to vertical structures are very limited in space and offer in most cases very poor water resources. In the present case, we do show that an outstanding aquifer in Brittany is linked to a geological context associated with low-angle faults possibly directly connected with vertical feeders. In particular, we show through a high-resolution gravimetric survey that the highly fractured contact between granite and micaschists, which constitutes the main path for groundwater flow, is a gently dipping structure. Combined gravimetric, magnetic and geological data allowed us to establish the overall aquifer geometry by running a three-dimensional forward model. In addition, details about the shape of the contact have been obtained using an iterative scheme based on the method of Oldenburg (1974). The gravimetric model confirms the presence of sub-vertical faults that may constitute important drains for the aquifer recharge. Thus, the geological context associated with exceptional water resources for this crystalline aquifer is characterized by a sub-horizontal to gently dipping contact between granite and micaschists. Only such a geological context can allow sufficient recharge to provide the main water supply for a town of 18,000 inhabitants at an average rate of about a billion of cubic meter per year since 1991. Thus, instead of looking for possible vertical structures like in classical hard-rock hydrogeology, it appears much more efficient to detect sub-horizontal permeable fractures and faults for providing consistent water resources.  相似文献   
85.
Antibody-based micro-arrays instruments are very promising tools for the search for biomarkers in planetary exploration missions. Since such instruments have never been used in this context, it is important to test their resistance to space constraints. In particular, cosmic particles might be deleterious. In the present study, we have investigated the effect of low energy protons (2 MeV) on antibody performances with fluences levels much greater than expected for a typical mission to Mars. We show that these particles do not alter significantly the antibody recognition capability for both free (in solution) and grafted (covalently bound to the support) freeze–dried antibodies. Details of the freeze–dried drying process used to optimize antibody performances during our experiments are also presented.  相似文献   
86.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   
87.
Preservation of cyclic steps contrasts markedly with that of subcritical‐flow bedforms, because cyclic steps migrate upslope eroding their lee face and preserving their stoss side. Such bedforms have not been described from turbidite outcrops and cores as yet. A conceptual block diagram for recognition of cyclic steps in outcrop has been constructed and is tested by outcrop studies of deep water submarine fan deposits of the Tabernas Basin in south‐eastern Spain. Experimental data indicate that depositional processes on the stoss side of a cyclic step are controlled by a hydraulic jump, which decelerates the flow and by subsequent waxing of the flow up to supercritical conditions once more. The hydraulic jump produces a large scour with soft‐sediment deformation (flames) preserved in coarse‐tail normal‐graded structureless deposits (Bouma Ta), while near‐horizontal, massive to stratified top‐cut‐out turbidite beds are found further down the stoss side of the bedform. The architecture of cyclic steps can best be described as large, up to hundreds of metres, lens‐shaped bodies that are truncated by erosive surfaces representing the set boundaries and that consist of nearly horizontal lying stacks of top‐cut‐out turbidite beds. The facies that characterize these bedforms have traditionally been described as turbidite units in idealized vertical sequences of high‐density turbidity currents, but have not yet been interpreted to represent bedforms produced by supercritical flow. Their large size, which is in the order of 20 m for gravelly and up to hundreds of metres for sandy steps, is likely to have hindered their recognition in outcrop so far.  相似文献   
88.
The Seine estuary, one of the largest estuaries of the European northwest continental shelf, is subjected to numerous anthropogenic influences. Here we present an assessment of the microbial faecal contamination of the estuary water. The most vulnerable areas were defined on the basis of the fluxes of indicator organisms and the occurrence of Salmonella and Cryptosporidium sp. and Giardia sp. (oo)cysts. The microbial quality of the water changes from upstream to downstream: in the upstream area, contamination by faecal-indicator bacteria and Salmonella occurs during periods of high flow; in the urbanized area, mid-way between the uppermost areas of the estuary and its mouth, discharge from a wastewater treatment plant and a tributary degrade water quality; at the estuary mouth, the accumulation of microorganisms attached to particles in the maximum turbidity zone, particularly Clostridium perfringens spores and oocysts of Cryptosporidium, is accompanied by inputs of ThC and Escherichia coli from tributaries. In some areas, significant strong relations are observed between Salmonella, (oo)cysts of protozoan, and levels of faecal indicators.  相似文献   
89.
A simple thermohydromechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way.  相似文献   
90.
Climate change and increased atmospheric CO2 concentration can impact hydrological and nitrogen cycling at the catchment scale. The objective of this study is to assess these impacts in an intensive agricultural headwater catchment in western France. A calibrated and validated agro-hydrological model was driven by output of the climate model ARPEGE under the A1B emission scenario over 30-year simulation periods. Our study indicated that with climate warming and increased atmospheric CO2, the main trends in water balance were a decrease in annual actual evapotranspiration (AET), a decrease in annual discharge and wetland extent, and a decrease in spring and summer of groundwater recharge and soil-water content. Not considering the effects of increased atmospheric CO2 in the agro-hydrological model led to overestimating discharge decrease and underestimating AET decrease and wetland extent. Climate change could influence N cycling by increasing soil N mineralisation, increasing soil denitrification in wetlands and upstream areas, and decreasing NO3–N load to streams. Since wetlands appear to be sensitive to climate change, improving modelling to better predict their responses is an important issue, especially to help plan sustainable management of these vulnerable areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号