首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   14篇
  国内免费   1篇
测绘学   3篇
大气科学   22篇
地球物理   56篇
地质学   57篇
海洋学   15篇
天文学   31篇
自然地理   7篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   8篇
  2016年   14篇
  2015年   9篇
  2014年   16篇
  2013年   15篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   11篇
  2008年   9篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1973年   1篇
排序方式: 共有191条查询结果,搜索用时 31 毫秒
101.
Three radial audiomagnetotelluric (AMT) sounding profiles were carried out across the narrow, 65-km diameter troctolitic Meugueur-Meugueur ring structure, central Aïr, Niger, to study its electrical configuration; one profile extended across the bedrock into the large Ofoud complex situated slightly off geographical centre within the ring. Apparent resistivity data from 27 sites ranged from isotropic to strongly anisotropic. In nearly all soundings, one- and two-dimensional modelling indicated the presence of a major zone of low resistivity (60–600 Ωm), about 200 m thick, dipping steeply inwards at an angle of 65–80° and extending to a depth of at least 2–5 km. This layer, overlain and underlain by rocks of higher resistivities in excess of 5000 Ωm, is taken to be the outer contact. A highly resistive body, about 200 m in width, dipping inwards to a depth of at least 4 km is taken to be the Meugueur-Meugueur intrusion, which is thus interpreted to be a cone sheet.  相似文献   
102.
We analyze the effects of flat and bumpy top, fractional and internally inhomogeneous cloud layers on large area-averaged thermal radiative fluxes. Inhomogeneous clouds are generated by a new stochastic model: the tree-driven mass accumulation process (tdMAP). This model is able to provide stratocumulus and cumulus cloud fields with properties close to those observed in real clouds. A sensitivity study of cloud parameters is done by analyzing differences between 3D fluxes simulated by the spherical harmonic discrete ordinate method and three “standard” models likely to be used in general circulation models: plane-parallel homogeneous cloud model (PPH), PPH with fractional cloud coverage model (FCPPH) and independent pixel approximation model (IPA). We show that thermal fluxes are strong functions of fractional cloud coverage, mean optical depth, mean geometrical thickness and cloud base altitude. Fluctuations of “in-cloud” horizontal variability in optical depth and cloud-top bumps have negligible effects in the whole. We also showed that PPH, FCPPH and IPA models are not suitable to compute thermal fluxes of flat top fractional inhomogeneous cloud layer, except for completely overcast cloud. This implies that horizontal transport of photon at thermal wavelengths is important when cloudy cells are separated by optically thin regions.  相似文献   
103.
When pyroclastic deposits settle at high temperature in a terrestrial magnetic field they memorize their setting temperature. This temperature varies from one type of deposit to the other, from ambient temperature for some airfall ashes up to hundreds of degrees centigrade for nuées ardentes or pumice flows. These temperatures also vary significantly with distance from the eruptive vent. At old events, it is often very difficult first to establish the nature of the deposit because of crystallizations or cements created by diagenesis, and then to locate the eroded eruptive centers. The exact assessment of the setting temperature allows one, on the one hand, to find both the nature and the emplacement process of the deposit and, on the other hand, to find the location of the eruptive centers, by working out a temperature map.The methods used up to now are all based on the analysis of objects buried in the flow, or on that of the surrounding rocks. Where burnt wood or heated objects are concerned, this analysis may be chemical or based on fossil thermoremanent magnetization in the case of potteries or rocks. Such objects are not always to be found, so the method proposed here uses samples drawn from the deposit itself. The principle, derived from Thellier's method, compares the natural magnetization lost during heating to the loss of total thermoremanent magnetization acquired during cooling in a known field. This method essentially differs from that of Thellier by a direct reading of the magnetization left at any high temperature. This process, which requires only two heatings, enables one to avoid any difficulty linked to magnetic interactions and to lessen the effect of mineralogical transformations.  相似文献   
104.
Groundwater coseismic transient anomalies are evidenced and characterized by modelling the mixing function F characteristic of the groundwater dynamics in the Ogeu (western French Pyrénées) seismic context. Investigations of water-rock interactions at Ogeu indicate that these mineral waters from sedimentary environments result from the mixing of deep waters with evaporitic signature with surficial karstic waters. A 3-year hydrochemical monitoring of Ogeu springwater evidences that using arbitrary thresholds constituted by the mean ± 1 or 2σ, as often performed in such studies, is not a suitable approach to characterize transient anomalies. Instead, we have used a mixing function F calculated with chemical elements, which display a conservative behavior not controlled by the precipitation of a mineral phase. F is processed with seismic energy release (Es) and effective rainfalls (R). Linear impulse responses of F to Es and R have been calculated. Rapid responses (10 days) to rainwater inputs are evidenced, consisting in the recharge of the shallow karstic reservoir by fresh water. Complex impulse response of F to microseismic activity is also evidenced. It consists in a 2-phase hydrologic signal, with an inflow of saline water in the shallow reservoir with a response delay of 10 days, followed by an inflow of karstic water with a response delay of 70 days, the amount being higher than the saline inflow. Such a process probably results from changes in volumetric strain with subsequent microfracturation transient episodes allowing short inflow of deep salted water in the aquifer. This study demonstrates that groundwater systems in such environments are unstable systems that are highly sensitive to both rainfall inputs and microseismic activity. Impulse responses calculation of F to Es is shown to be a powerful tool to identify transient anomalies. Similar processing is suggested to be potentially efficient to detect precursors of earthquakes when long time-series (5 years at least) are available in areas with high seismicity.  相似文献   
105.
We have previously developed a method for characterizing and localizing 'homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the 'multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and 'effective degree'. This method is compared to the 'complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.  相似文献   
106.
107.
108.
109.
110.
The development of coastal ocean modeling in the recent years has allowed an improved representation of the associated complex physics. Such models have become more realistic, to the point that they can now be used to design observation networks in coastal areas, with the idea that a “good” network is a network that controls model state error. To test this ability without performing data assimilation, we set up a technique called Representer Matrix Spectra (RMS) technique that combines the model state and observation error covariance matrices into a single scaled representer matrix. Examination of the spectrum and the eigenvectors of that matrix informs us on which model state error modes a network can detect and constrain amidst the observation error background. We applied our technique to a 3D coastal model in the Bay of Biscay, with a focus on mesoscale activity, and tested the performance of various altimetry networks and an in situ array deployment strategy. It appears that a single nadir altimeter is not efficient enough at capturing coastal mesoscale physics, while a wide swath altimeter would do a much better job. Testing various local in situ array configurations confirms that adding a current meter to a vertical temperature measurement array improves the detection of secondary variability modes, while shifting the array higher on the shelf break would obviously enhance the model constraint along the coast. The RMS technique is easily set up and used as a “black box,” but the utility of its results is maximized by previous knowledge of model state error physics. The technique provides both quantitative (eigenvalues) and qualitative (eigenvectors) tools to study and compare various network options. The qualitative approach is essential to discard possibly inconsistent modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号