首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   8篇
  国内免费   1篇
测绘学   2篇
大气科学   20篇
地球物理   44篇
地质学   41篇
海洋学   11篇
天文学   26篇
自然地理   4篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   12篇
  2015年   7篇
  2014年   14篇
  2013年   11篇
  2012年   11篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有148条查询结果,搜索用时 0 毫秒
71.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   
72.
As in the observed record, the termination of El Niño in the coupled IPCC-AR4 climate models involves meridional processes tied to the seasonal cycle. These meridional processes both precondition the termination of El Niño events in general and lead to a peculiar termination of extreme El Niño events (such as those of 1982–83 and 1997–98), in which the eastern equatorial Pacific warm sea surface temperature anomalies (SSTA) persist well into boreal spring/early-summer. The mechanisms controlling the peculiar termination of extreme El Niño events, which involves to the development of an equatorially centred intertropical convergence zone, are consistent across the four models that exhibit extreme El Niños and observational record, suggesting that this peculiar termination represents a general feature of extreme El Niños. Further, due to their unusual termination, extreme El Niños exhibit an apparent eastward propagation of their SSTA, which can strongly influence estimates of the apparent propagation of ENSO over multi-decadal periods. Interpreting these propagation changes as evidence of changes in the underlying dynamical feedbacks behind El Niño could therefore be misleading, given the strong influence of a single extreme event.  相似文献   
73.
The Mt Cameroon volcano is the highest and most active volcano of the Cameroon Volcanic Line. Little geological information is available for improving the understanding of the structure of this large volcanic system and its relationship to regional tectonics. After reviewing the tectonic evolution of the region, the analysis of a Digital Elevation Model and results from a field campaign dedicated to mapping geological structures in the summit area and at the SE base of Mt Cameroon are presented. Mt Cameroon is a lava-dominated volcano with long steep (over 30°) flanks. It is elongate parallel to its well defined rift zone. The summit plateau is bordered by 10 m high cliffs formed by summit subsidence along normal faults. Geological profiles were measured along rivers cutting through a topographic step at the SE base of Mt Cameroon. This step is associated with deformed Miocene sediments from the Douala basin that are overlain by volcanic products. Weak sediments of this area are deformed by 050°–060° and 020°–030° trending asymmetrical folds verging toward the SE, and thrusts faults related to the spreading of the volcano over its mechanically weak substratum. Combined remote sensing and field observations suggest that spreading is accommodated by summit subsidence and flanks sliding. Both slow spreading movements and catastrophic collapses of the steep flanks are interpreted to result from complex interactions between the growing edifice, repeated dyke intrusions, the weak sedimentary substratum and tectonic structures.  相似文献   
74.
The development of coastal ocean modeling in the recent years has allowed an improved representation of the associated complex physics. Such models have become more realistic, to the point that they can now be used to design observation networks in coastal areas, with the idea that a “good” network is a network that controls model state error. To test this ability without performing data assimilation, we set up a technique called Representer Matrix Spectra (RMS) technique that combines the model state and observation error covariance matrices into a single scaled representer matrix. Examination of the spectrum and the eigenvectors of that matrix informs us on which model state error modes a network can detect and constrain amidst the observation error background. We applied our technique to a 3D coastal model in the Bay of Biscay, with a focus on mesoscale activity, and tested the performance of various altimetry networks and an in situ array deployment strategy. It appears that a single nadir altimeter is not efficient enough at capturing coastal mesoscale physics, while a wide swath altimeter would do a much better job. Testing various local in situ array configurations confirms that adding a current meter to a vertical temperature measurement array improves the detection of secondary variability modes, while shifting the array higher on the shelf break would obviously enhance the model constraint along the coast. The RMS technique is easily set up and used as a “black box,” but the utility of its results is maximized by previous knowledge of model state error physics. The technique provides both quantitative (eigenvalues) and qualitative (eigenvectors) tools to study and compare various network options. The qualitative approach is essential to discard possibly inconsistent modes.  相似文献   
75.
76.
Predicting runoff hot spots and hot‐moments within a headwater crop‐catchment is of the utmost importance to reduce adverse effects on aquatic ecosystems by adapting land use management to control runoff. Reliable predictions of runoff patterns during a crop growing season remain challenging. This is mainly due to the large spatial and temporal variations of topsoil hydraulic properties controlled by complex interactions between weather, growing vegetation, and cropping operations. This interaction can significantly modify runoff patterns and few process‐based models can integrate this evolution of topsoil properties during a crop growing season at the catchment scale. Therefore, the purpose of this study was to better constrain the event‐based hydrological model Limburg Soil Erosion Model by incorporating temporal constraints for input topsoil properties during a crop growing season (LISEM). The results of the temporal constraint strategy (TCS) were compared with a classical event per event calibration strategy (EES) using multi‐scale runoff information (from plot to catchment). The EES and TCS approaches were applied in a loess catchment of 47 ha located 30 km northeast of Strasbourg (Alsace, France). A slight decrease of the Nash–Sutcliffe efficiency criterion on runoff discharge for TCS compared to EES was counterbalanced by a clear improvement of the spatial runoff patterns within the catchment. This study showed that limited agronomical and climatic information added during the calibration step improved the spatial runoff predictions of an event‐based model. Reliable prediction of runoff source, connectivity, and dynamics can then be derived and discussed with stakeholders to identify runoff hot spots and hot‐moments for subsequent land use and crop management modifications.  相似文献   
77.
A simple thermohydromechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way.  相似文献   
78.
The largest natrocarbonatite lava flow eruption ever documented at Oldoinyo Lengai, NW Tanzania, occurred from March 25 to April 5, 2006, in two main phases. It was associated with hornito collapse, rapid extrusion of lava covering a third of the crater and emplacement of a 3-km long compound rubbly pahoehoe to blocky aa-like flow on the W flank. The eruption was followed by rapid enlargement of a pit crater. The erupted natrocarbonatite lava has high silica content (3% SiO2). The eruption chronology is reconstructed from eyewitness and news media reports and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, which provide the most reliable evidence to constrain the eruption’s onset and variations in activity. The eruption products were mapped in the field and the total erupted lava volume estimated at 9.2 ± 3.0 × 105 m3. The event chronology and field evidence are consistent with vent construct instability causing magma mixing and rapid extrusion from shallow reservoirs. It provides new insights into and highlights the evolution of the shallow magmatic system at this unique natrocarbonatite volcano.  相似文献   
79.
Groundwater coseismic transient anomalies are evidenced and characterized by modelling the mixing function F characteristic of the groundwater dynamics in the Ogeu (western French Pyrénées) seismic context. Investigations of water-rock interactions at Ogeu indicate that these mineral waters from sedimentary environments result from the mixing of deep waters with evaporitic signature with surficial karstic waters. A 3-year hydrochemical monitoring of Ogeu springwater evidences that using arbitrary thresholds constituted by the mean ± 1 or 2σ, as often performed in such studies, is not a suitable approach to characterize transient anomalies. Instead, we have used a mixing function F calculated with chemical elements, which display a conservative behavior not controlled by the precipitation of a mineral phase. F is processed with seismic energy release (Es) and effective rainfalls (R). Linear impulse responses of F to Es and R have been calculated. Rapid responses (10 days) to rainwater inputs are evidenced, consisting in the recharge of the shallow karstic reservoir by fresh water. Complex impulse response of F to microseismic activity is also evidenced. It consists in a 2-phase hydrologic signal, with an inflow of saline water in the shallow reservoir with a response delay of 10 days, followed by an inflow of karstic water with a response delay of 70 days, the amount being higher than the saline inflow. Such a process probably results from changes in volumetric strain with subsequent microfracturation transient episodes allowing short inflow of deep salted water in the aquifer. This study demonstrates that groundwater systems in such environments are unstable systems that are highly sensitive to both rainfall inputs and microseismic activity. Impulse responses calculation of F to Es is shown to be a powerful tool to identify transient anomalies. Similar processing is suggested to be potentially efficient to detect precursors of earthquakes when long time-series (5 years at least) are available in areas with high seismicity.  相似文献   
80.
Abstract— A database of magnetic susceptibility (χ) measurements on different non‐ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well‐grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)‐88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号