首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   33篇
  国内免费   5篇
测绘学   15篇
大气科学   92篇
地球物理   126篇
地质学   208篇
海洋学   42篇
天文学   84篇
综合类   14篇
自然地理   43篇
  2024年   2篇
  2023年   4篇
  2021年   8篇
  2020年   10篇
  2019年   12篇
  2018年   25篇
  2017年   14篇
  2016年   33篇
  2015年   22篇
  2014年   27篇
  2013年   44篇
  2012年   37篇
  2011年   36篇
  2010年   33篇
  2009年   39篇
  2008年   38篇
  2007年   28篇
  2006年   25篇
  2005年   33篇
  2004年   16篇
  2003年   18篇
  2002年   8篇
  2001年   15篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   2篇
  1986年   5篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有624条查询结果,搜索用时 0 毫秒
621.
Glacial geomorphology and ice ages in Tibet and the surrounding mountains   总被引:1,自引:0,他引:1  
Matthias  Kuhle 《Island Arc》2005,14(4):346-367
Abstract   Since 1973 new data have been obtained on the maximum extent of glaciation in High Asia. Evidence for an ice sheet covering Tibet during the last glacial period means a radical rethinking about glaciation in the northern hemisphere. The ice sheet's subtropical latitude, vast size (2.4 million km2) and high elevation (6000 m a.s.l.) are supposed to have resulted in a substantial, albedo-induced cooling of the Earth's atmosphere and the disruption of summer monsoon circulation. Moraines were found to reach down to 460 m a.s.l. on the southern flank of the Himalayas and to 2300 m a.s.l. on the northern slope of the Tibetan Plateau, in the Qilian Shan region. On the northern slopes of the Karakoram, Aghil and Kuen-Lun Mountains, moraines occur as far down as 1900 m a.s.l. In southern Tibet, radiographic analyses of erratics suggest a former ice thickness of at least 1200 m. Glacial polish and roches moutonnées in the Himalayas and Karakoram suggest former glaciers as thick as 1200–2700 m. On the basis of this evidence, a 1100–1600-m lower equilibrium line has been reconstructed, resulting in an ice sheet of 2.4 million km2, covering almost all of Tibet. Radiometric ages, obtained by different methods, classify this glaciation as isotope stage 3–2 in age (Würmian, the last glacial period, ca  60 000–18 000 years ago).  相似文献   
622.
The effect of hydro-meteorological forcings (tidal and wind-induced flows) on the transport of suspended particulate matter (SPM), on the formation of high-concentrated mud suspensions and on the occurrence of sand–mud suspensions has been studied using long-term multi-parametric observations. Data have been collected in a coastal turbidity maximum area (southern North Sea) where a mixture of sandy and muddy sediments prevails. Data have been classified according to variations in subtidal alongshore currents, with the direction of subtidal flow depending on wind direction. This influences the position of the turbidity maximum; as such also the origin of SPM. Winds blowing from the NE will increase SPM concentration, whilst SW winds will induce a decrease. The latter is related to advection of less turbid English Channel water, inducing a shift of the turbidity maximum towards the NE and the Westerschelde estuary. Under these conditions, marine mud will be imported and buffered in the estuary. Under persistent NE winds, high-concentrated mud suspensions are formed and remain present during several tidal cycles. Data show that SPM consists of a mixture of flocs and locally eroded sand grains during high currents. This has implications towards used instrumentation: SPM concentration estimates from optical backscatter sensors will only be reliable when SPM consists of cohesive sediments only; with mixtures of cohesive and non-cohesive sediments, a combination of both optical and acoustic sensors are needed to get an accurate estimate of the total SPM concentration.  相似文献   
623.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (∼0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (∼0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   
624.
Cratons are generally assumed to be regions of long-lasting tectonic stability. In particular the study of the Phanerozoic exhumation history of cratons has been largely hampered by the scarcity of suitable stratigraphic controls onshore. This fact is even more pronounced in terranes lacking Mesozoic or younger penetrative structural fabrics and metamorphic overprinting. Our study in the Limpopo belt shows that modern apatite fission track thermochronology provides a hitherto unavailable perspective in the study of these rocks, and has profound implications for the crustal evolution of the Zimbabwe Craton.Apatite fission track data from 35 samples taken along two transects, in the southern edge of the Zimbabwe Craton and in the Central Zone of the Limpopo Belt, suggest that extensive regions experienced kilometer-scale exhumation in two discrete events, as recently as the Cretaceous. The first occurred at around 130 Ma, and the second at around 90 Ma. Basin subsidence and sedimentation loads on the Mozambique margin support the timing of these events and provide strong indications of the source and pathways for the eroded material. Further, the results indicate that young and old “surfaces” (in a geomorphological sense) may be structurally juxtaposed in regions of high elevation in Zimbabwe. This is contrary to early ideas of surface chronologies based on summit accordances or invoking pediplanation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号