首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1941篇
  免费   117篇
  国内免费   31篇
测绘学   44篇
大气科学   197篇
地球物理   485篇
地质学   674篇
海洋学   156篇
天文学   334篇
综合类   7篇
自然地理   192篇
  2023年   7篇
  2022年   17篇
  2021年   39篇
  2020年   53篇
  2019年   45篇
  2018年   86篇
  2017年   71篇
  2016年   86篇
  2015年   65篇
  2014年   75篇
  2013年   142篇
  2012年   92篇
  2011年   118篇
  2010年   76篇
  2009年   129篇
  2008年   118篇
  2007年   115篇
  2006年   90篇
  2005年   67篇
  2004年   68篇
  2003年   74篇
  2002年   68篇
  2001年   34篇
  2000年   36篇
  1999年   35篇
  1998年   27篇
  1997年   11篇
  1996年   19篇
  1995年   13篇
  1994年   17篇
  1993年   14篇
  1992年   10篇
  1991年   9篇
  1990年   9篇
  1989年   7篇
  1988年   12篇
  1987年   7篇
  1986年   9篇
  1985年   8篇
  1984年   13篇
  1983年   8篇
  1982年   9篇
  1981年   9篇
  1980年   5篇
  1979年   13篇
  1978年   4篇
  1977年   5篇
  1974年   5篇
  1973年   9篇
  1971年   5篇
排序方式: 共有2089条查询结果,搜索用时 364 毫秒
91.
The declining health of marine ecosystems around the world is evidence that current piecemeal governance is inadequate to successfully support healthy coastal and ocean ecosystems and sustain human uses of the ocean. One proposed solution to this problem is ecosystem-based marine spatial planning (MSP), which is a process that informs the spatial distribution of activities in the ocean so that existing and emerging uses can be maintained, use conflicts reduced, and ecosystem health and services protected and sustained for future generations. Because a key goal of ecosystem-based MSP is to maintain the delivery of ecosystem services that humans want and need, it must be based on ecological principles that articulate the scientifically recognized attributes of healthy, functioning ecosystems. These principles should be incorporated into a decision-making framework with clearly defined targets for these ecological attributes. This paper identifies ecological principles for MSP based on a synthesis of previously suggested and/or operationalized principles, along with recommendations generated by a group of twenty ecologists and marine scientists with diverse backgrounds and perspectives on MSP. The proposed four main ecological principles to guide MSP—maintaining or restoring: native species diversity, habitat diversity and heterogeneity, key species, and connectivity—and two additional guidelines, the need to account for context and uncertainty, must be explicitly taken into account in the planning process. When applied in concert with social, economic, and governance principles, these ecological principles can inform the designation and siting of ocean uses and the management of activities in the ocean to maintain or restore healthy ecosystems, allow delivery of marine ecosystem services, and ensure sustainable economic and social benefits.  相似文献   
92.
Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock‐metamorphosed quartz‐bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block‐model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35–40 km and has since experienced up to ~2 km of differential erosion.  相似文献   
93.
Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz‐bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best‐fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best‐fit model results in a final crater (rim‐to‐rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak‐ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure.  相似文献   
94.
Meteorite impact‐generated accretionary lapilli are not well studied. The recently discovered distal ejecta from the 1850 Ma Sudbury impact event contain abundant accretionary lapilli generated during the impact and deposited at great distances from the crater. We petrographically and geochemically examined lapilli from five sites (McClure, Connors Creek, Hwy 588, Pine River, and Grand Trunk Pacific, approximately 480–750 km from the center of the Sudbury structure). The compositions of quartz, K‐feldspar, calcite, biotite, and chlorite minerals are similar to each other in all of the samples, although the relative proportions of the minerals vary from site to site. The lapilli occur in a matrix of coarse‐grained quartz, carbonate, and feldspar grains. Zonation within lapilli appears to be due to grain size distribution rather than compositional variation. The inner zones are coarser grained than outer zones. The relative abundances of calcite, phyllosilicates, and feldspars are similar in each zone within individual lapilli. A meteoritic component is indicated by up to 1.8 ppb Ir in one lapillus from the Pine River site, and Ni and Cr ratios are on a chondritic trend line for many of the lapilli. Mechanisms previously proposed for accretionary lapilli formation seem inadequate to explain deposition of distal accretionary lapilli resulting from impact events. A new mechanism for upper atmospheric accretion is proposed, whereby ash ejected from impact events concentrates at altitudes of neutral buoyancy, where it then accretes and is deposited later than ballistically emplaced particles. Likely, multiple processes are taking place in the chaotic postimpact environment.  相似文献   
95.
The Irish Sea, like many marine areas, is threatened by anthropogenic activities. In particular the Pisces Reef system, a series of smothered rocky reefs are subject to fishing pressures as a result of their position within a Nephrops norvegicus fishery. In an area of sediment deposition and retention the reefs modify the environment by increasing the energy of near-bottom currents which results in localised scouring. This is the first study to attempt to characterise and investigate the ecological functioning of the Pisces Reef system. A multidisciplinary approach was essential for accurate investigation of the area. To facilitate more effective management of the benthic habitats of the Reef system, this study integrates acoustic, seismic, grab sampling and video ground-truthing methods for benthic habitat discrimination. Orientation of the scour hollows also suggest that seabed features could be used to infer dominant flow regimes such as the Irish Sea Gyre. The data revealed significant geology–benthos relationships. A unique biotope was described for the reef habitat and it was demonstrated that scouring may influence community composition through disturbance mechanisms. This study provides preliminary information required for management of a unique habitat within a uniform region.  相似文献   
96.
Meteorite fusion crust formation is a brief event in a high‐temperature (2000–12,000 K) and high‐pressure (2–5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9–1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high‐pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O‐poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.  相似文献   
97.
A diverse assemblage of late Pleistocene marsupial trackways on a lake bed in south-western Victoria provides the first information relating to the gaits and morphology of several megafaunal species, and represents the most speciose and best preserved megafaunal footprint site in Australia. The 60–110 ka volcaniclastic lacustrine sedimentary rocks preserve trackways of the diprotodontid Diprotodon optatum, a macropodid (probably Protemnodon sp.) and a large vombatid (perhaps Ramsayia magna or ‘Phascolomysmedius) and possible prints of the marsupial lion, Thylacoleo carnifex. The footprints were imprinted within a short time period, demonstrating the association of the taxa present, rather than the time-averaged accumulations usually observed in skeletal fossil deposits. Individual manus and pes prints are distinguishable in some trackways, and in many cases some digital pad morphology is also present. Several parameters traditionally used to differentiate ichnotaxa, including trackway gauge and the degree of print in-turning relative to the midline, are shown to be subject to significant intraspecific variation in marsupials. Sexual dimorphism in the trackway proportions of Diprotodon, and its potential for occurrence in all large bodied, quadrupedal marsupials, is identified here for the first time.  相似文献   
98.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
99.
Lower crustal xenoliths erupted from an intraplate diatreme reveal that a portion of the New Zealand Gondwana margin experienced high‐temperature (HT) to ultrahigh‐temperature (UHT) granulite facies metamorphism just after flat slab subduction ceased at c. 110–105 Ma. PT calculations for garnet–orthopyroxene‐bearing felsic granulite xenoliths indicate equilibration at ~815 to 910°C and 0.7 to 0.8 GPa, with garnet‐bearing mafic granulite xenoliths yielding at least 900°C. Supporting evidence for the attainment of HT and UHT conditions in felsic granulite comes from re‐integration of exsolution in feldspar (~900–950°C at 0.8 GPa), Ti‐in‐zircon thermometry on Y‐depleted overgrowths on detrital zircon grains (932°C ± 24°C at aTiO2 = 0.8 ± 0.2), and correlation of observed assemblages and mineral compositions with thermodynamic modelling results (≥850°C at 0.7 to 0.8 GPa). The thin zircon overgrowths, which were mainly targeted by drilling through the cores of grains, yield a U–Pb pooled age of 91.7 ± 2.0 Ma. The cause of Late Cretaceous HT‐UHT metamorphism on the Zealandia Gondwana margin is attributed to collision and partial subduction of the buoyant oceanic Hikurangi Plateau in the Early Cretaceous. The halt of subduction caused the fore‐running shallowly dipping slab to rollback towards the trench position and permitted the upper mantle to rapidly increase the geothermal gradient through the base of the extending (former) accretionary prism. This sequence of events provides a mechanism for achieving regional HT–UHT conditions in the lower crust with little or no sign of this event at the surface.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号