首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89786篇
  免费   1337篇
  国内免费   1418篇
测绘学   2981篇
大气科学   7192篇
地球物理   18197篇
地质学   32408篇
海洋学   6748篇
天文学   16847篇
综合类   2276篇
自然地理   5892篇
  2020年   497篇
  2019年   520篇
  2018年   5497篇
  2017年   4781篇
  2016年   3868篇
  2015年   1253篇
  2014年   1523篇
  2013年   3326篇
  2012年   2453篇
  2011年   4824篇
  2010年   3850篇
  2009年   5109篇
  2008年   4447篇
  2007年   4616篇
  2006年   2553篇
  2005年   2363篇
  2004年   2648篇
  2003年   2475篇
  2002年   2214篇
  2001年   1828篇
  2000年   1807篇
  1999年   1525篇
  1998年   1519篇
  1997年   1485篇
  1996年   1282篇
  1995年   1212篇
  1994年   1097篇
  1993年   999篇
  1992年   945篇
  1991年   802篇
  1990年   1010篇
  1989年   848篇
  1988年   753篇
  1987年   927篇
  1986年   816篇
  1985年   1020篇
  1984年   1181篇
  1983年   1125篇
  1982年   1018篇
  1981年   995篇
  1980年   848篇
  1979年   817篇
  1978年   869篇
  1977年   787篇
  1976年   754篇
  1975年   696篇
  1974年   703篇
  1973年   709篇
  1972年   440篇
  1971年   384篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Spectropolarimetry of Jupiter at resolutions between 22 and 35 Å reveals a strong increase of linear polarization in the 7250-A? CH4 band. This is very probably due to the decreasing contribution toward the band center of the higher orders of scattering, which have a smaller net polarization than the first few orders. The linear polarization is also enhanced in the band at 7900 A? comprising the 7920-A? NH3 and 7600- to 8200-A? CH4 bands. The normalized circular polarization shows a feature at 7250 A? with a dispersion shape. This is most probably produced in a double-scattering process involving either a solid or liquid aerosol with an absorption at 7250 A?. Methane aerosols, the obvious candidates from a spectroscopic point of view, are, however, forbidden if current estimates of the Jovian atmospheric temperature are correct.  相似文献   
172.
D. J. Schove 《Solar physics》1979,63(2):423-432
Dates of solar maxima and minima extending back to c. 1610 were estimated by Wolf and Wolfer at Zürich (Waldmeier, 1961) in the nineteenth century, and those back to c. 1710 have been generally accepted. Slight modifications have already been suggested by the author (Schove, 1967) for the seventeenth century, although, in that century, even the existence of the eleven-year cycle has been questioned (Eddy, 1976). In the course of any sunspot cycle we find a pattern of the aurorae in place and time characteristic of sunspot cycles of the particular amplitude-class. These patterns since c. 1710 can be linked to the precise dates of the Zürich turning-points by a set of empirical rules. A sunspot rule is based on the Gnevyshev gap, the gap in large sunspots near the smoothed maximum. These rules are here applied to the period c. 1510–1710 to give improved determination of earlier turning-points, and approximately confirm the dates given for the seventeenth century by Wolfer and for most of the later sixteenth century by Link (1978). Some turning-points for the fifteenth century and revised sunspot numbers for the period 1700–48 are also given.  相似文献   
173.
During quiescent auroras the large-scale electric field is essentially irrotational. The volume formed by the plasma sheet and its extension into the auroral oval is connected to an external source by electric currents, which enter and leave the volume at different electric potentials and which supply sufficient energy to support the auroral activity. The location of the actual acceleration of particles depends on the internal distribution of electric fields and currents. One important feature is the energization of the carriers of the cross-tail current and another is the acceleration of electrons precipitated through relatively low-altitude magnetic-field-aligned potential drops.Substorm auroras depend on rapid and (especially initially) localized release of energy that can only be supplied by tapping stored magnetic energy. The energy is transmitted to the charged particle via electric inductive fields.The primary electric field due to changing electric currents is redistributed in a complicated way—but never extinguished—by polarization of charges. As a consequence, any tendency of the plasma to suppress magnetic-field-aligned components of the electric fields leads to a corresponding enhancement of the transverse component.  相似文献   
174.
The thermal balance of the plasma in the night-time mid-latitude F2-region is examined using solutions of the steady-state O+ and electron heat balance equations. The required concentrations and field-aligned velocities are obtained from a simultaneous solution of the time-dependent O+ continuity and momentum equations.The results demonstrate the systematic trend for the O+ temperature to be 10–20 K greater than the electron temperature during the night at around 300 km, as observed at St. Santin by Bauer and Mazaudier. It is shown that frictional heating between the O+ and neutral gases is the cause of the O+ temperature being greater than the electron temperature; the greater the importance of frictional heating in the thermal balance the greater is the difference in the O+ and electron temperatures. A study is made of the roles played in the thermal balance of the plasma by the thermal conductivity of the O+ and electron gases; collisional heat transfer between O+ electrons and neutrals; frictional heating between the O+ and neutral gases; and advection and convection due to field-aligned O+ and electron motions. The results of the study show that, at around 300 km, electron cooling by excitation of the fine structure of the ground state of atomic oxygen plays a major role in the thermal balance of the electrons and, since the temperature of the ions is little affected by this electron cooling process, in determining the difference between the ion and electron temperatures.  相似文献   
175.
Phase curves for the CO2 bands at 7883, 7820, and 8689 Å are presented. While the weaker bands at 7820 and 7883 Å show a definite “inverse phase effect,” the band at 8689 Å shows a more normal phase curve; it also exhibited much larger day-to-day variations in the CO2 abundance near superior conjunction in 1971. Because the variation of the phase curves with band strength is comparable to temporal variations on Venus, simultaneous observations of strong and weak bands are still needed to determine the dependence on band strength accurately.  相似文献   
176.
Photoelectric observations on five consecutive nights yield a period of rotation of 80 ± 2 hr with an amplitude of 0.7 magnitude for 182 Elsa, making it the longest period of rotation known to date. 182 Elsa is classed as an S object with a diameter of 48 km.  相似文献   
177.
J.G. Luhmann  R.J. Walker 《Icarus》1980,44(2):361-366
The ionospheric plasma density on magnetic field lines threading the Jovian rings which are located inside ~1.8 RJ on the jovigraphic equatorial plane, is calculated by using a rotating ion exosphere model. It is found that the bulk of the ionospheric particles on these field lines are on ballistic trajectories. On field lines approximately symmetric with respect to the jovigraphic equator, the ring, which to a first approximation would absorb the population of trapped particles, consequently has little effect. On field lines which are made asymmetric by the higher-order multipoles of Jupiter's field and the tilt of the dipole axis, the rings may have a significant effect. It is suggested that better definition of the rings' atmospheric and ionospheric properties is required to model these localized effects. If the rings are found to be an important plasma source for the inner magnetosphere, the present exospheric model will have to be revised.  相似文献   
178.
We present optical broadband photometry for the satellites J6, J7, J8, S7, S9, U3, U4, N1, and polarimetry for J6, obtained between 1970 and 1979. The outer Jovian satellites resemble C-type asteroids; J6 has a rotational lightcurve with period ~9.5 hr. The satellites beyond Jupiter also show C-like colors with the exception of S7 Hyperion. S9 Phoebe has a rotational lightcurve with period near either 11.25 or 21.1 hr. For U4 and N1 there is evidence for a lightcurve synchronous with the orbital revolution. The seven brighter Saturnian satellites show a regular relation between the ultraviolet dropoff and distance to the planet, probably related with differences in the rock component on their surfaces.  相似文献   
179.
The density distributions of the two main components in interstellar hydrogen are calculated using 21 cm line data from the Berkeley Survey and the Pulkovo Survey. The narrow, dense component (state I of neutral hydrogen) has a Gaussianz-distribution with a scale-height of 50 pc in the local zones (the galactic disk). For the wide, tenuous component (hydrogen in state II) we postulate a distribution valid in the zones where such a material predominates (70 pc?z? 350 pc the galactic stratum) i.e., $$n_H \left( z \right) = n_H \left( 0 \right)exp \left( { - \left( {z/300{\text{ }}pc} \right)^{3/2} } \right).$$ Similar components are found in the dust distribution and in the available stellar data reaching sufficiently highz-altitudes. The scale-heights depend on the stellar type: the stratum in M III stars is considerably wider than in A stars (500–700 pc against 300 pc). The gas to dust ratio is approximately the same in both components: 0.66 atom cm?3 mag?1 kpc in the galactic plane. A third state of the gas is postulated associating it the observed free electron stratum at a scale-height of 660 pc (hydrogen fully ionized at high temperatures). The ratio between the observed dispersions in neutral hydrogen (thermal width plus turbulence) and the total dispersions corresponding to the real inner energies in the medium is obtained by a comparison with the dispersion distribution σ(z) of the different stellar types associated with the disk and the stratum $$\sigma ^2 \left( {total} \right) = \sigma ^2 \left( {21{\text{ cm line}}} \right) \cdot {\text{ }}Q^2 ,$$ from which we graphically obtainedQ 2=2.9 ± 0.3, although that number could be lower in the densest parts of the spiral arms. Its dependence on magnetic field and cosmic rays is analysed, indicating equipartition of the different energy components in the interstellar medium and consistency with the observed values of the magnetic field: i.e., fluctuations with an average of ~ 3 μG (associated with the disk) in a homogeneous background of ~ 1 μG (associated with the stratum). A minimum and maximumK z-force are obtained assuming extreme conditions for the total density distribution (gas plus stars). TheK z-force obtained from the interstellar gas in its different states using approximations of the Boltzmann equation is a reasonable intermediate case between maximum and minimumK z. The mass density obtained in the galactic plane is 0.20±0.05M pc?3, and the results indicate that the galactic disk is somewhat narrower and denser than has usually been believed. The effects of wave-like distributions of matter in thez-coordinate are analysed in relation with theK z-force, and comparisons with theoretical results are performed. A qualitative model for the galactic field of force is postulated together with a classification of the different zones of the Galaxy according to their observed ranges in velocity dispersions and the behaviour of the potential well at differentz-altitudes. The disk containing at least two-thirds of the total mass atz<100 pc, the stratum containing one-third or less of the total mass atz≤600–800 pc, and the halo at higherz-altitudes with a small fraction of such a mass which is difficult to evaluate.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号