首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   19篇
  国内免费   1篇
测绘学   16篇
大气科学   14篇
地球物理   51篇
地质学   68篇
海洋学   14篇
天文学   84篇
综合类   1篇
自然地理   24篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   7篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   9篇
  2009年   10篇
  2008年   12篇
  2007年   10篇
  2006年   20篇
  2005年   13篇
  2004年   15篇
  2003年   12篇
  2002年   9篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
  1889年   1篇
  1887年   1篇
  1882年   3篇
  1880年   7篇
  1875年   4篇
  1872年   2篇
  1871年   3篇
排序方式: 共有272条查询结果,搜索用时 46 毫秒
71.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   
72.
Cores were collected from the length of Pakuranga estuary, a small urban estuary in Auckland, New Zealand, to determine sedimentation and contaminant history, and in particular the impact of urbanization. Catchment sediment loads for the most recent history (1953–1995), including urbanization since 1960, were reconstructed using the landcover history and soil erosion modeling. Pollen and14C dating and pre-urban landcover history were used to reconstruct early estuary sedimentation (i.e., post-3000 yr BP to 1960). Heavy metal concentrations, particle size,137Cs, pollen, and catchment sediment loads were all needed to disentangle the complex estuarine response to urbanization.137Cs profiles did not reflect the historical fallout pattern, but deposition of137Cs-labelled eroded catchment soil, coinciding with peaks in urban construction. Temporal variations in stormwater137Cs concentrations are likely due to varying contributions from137Cs-rich topsoil and137Cs-poor subsoils. A similar pattern was observed in heavy-metal concentrations and attributed to street runoff rather than topsoil being diluted by metal-poor subsoils. Dating of the sediment profiles showed that during urbanization sedimentation rates in the tidal creek and estuary were higher than sedimentation rates associated with past agricultural landuse and the original forest landcover. Urbanization has brought about substantial environmental changes in the upper estuary through continued infilling of shallow, intertidal areas, contamination by heavy metals to levels of ecological concern, sediment textural changes, and rapid mangrove colonization of formerly bare intertidal sediments.  相似文献   
73.
A Holocene record of pollen, macrofossils, testate amoebae and peat humification is presented from a small montane bog. Sediment accumulation began before 9000 yr BP, but peat growth not until ca. 7000 BP. From 12 000 to 7000 yr BP, a shrub–grassland dominated under a dry climate, with increasing conifer forest and tall scrub from ca. 9600 yr BP. At 7000 yr BP a dense montane–subalpine low conifer forest established under a moist, cool climatic regime. Between 7000 and 700 yr BP the bog surface was shrubby, tending to be dry but with highly variable surface wetness. The catchment was affected by major fire at least four times between 4000 and 1000 yr BP. Both fire and bog surface wetness may have been linked to ENSO-caused variations in rainfall. Cooler, cloudier winters and disturbance by fire promoted the expansion of the broadleaf tree Nothofagus menziesii between 4000 yr BP and 1300 yr BP at the expense of the previous conifer forest–scrub vegetation. Polynesian fires (ca. 700 yr BP) reduced the vegetation to tussock grassland and bracken. Deforestation did not markedly affect the hydrology of the site. European pastoralism since ad 1860 has increased run-off and rising water tables in the bog have led to a Sphagnum-dominated cover. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
74.
δ13C was determined in lignin extracted from present-day cladodes of Phyllocladus alpinus (a small coniferous tree) from seven well-lit sites across New Zealand. The δ13C values ranged from −30.9‰ to −23.6‰ and were compared with monthly means of temperature, precipitation, relative humidity and vapour pressure deficit from the nearest recording stations. Of these parameters, the leaf-to-air vapour pressure deficit of the first month of cladode growth and expansion proved to be the most significantly correlated with lignin δ13C, over a range of 0.3 to 0.8 kPa, confirming the importance of atmospheric moisture content on stomatal conductance. The carbon isotopic signature of lignin from fossilised cladodes preserved under the Kawakawa Tephra (22.6 k 14C yr BP) on the North Island is identical to that of the whole tissue, suggesting that for this species at least, fossil material can be used to approximate the lignin δ13C. The δ13C of species- and organ-specific fossil terrestrial plant material therefore provides an excellent method to quantify past changes in leaf-to-air vapour pressure deficit. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
75.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   
76.
The complex dynamics of a quarter‐scale model of a graphite nuclear reactor core, representative of the second generation of British advanced gas‐cooled nuclear reactors, is investigated numerically and experimentally. Advanced gas‐cooled nuclear reactor cores are polygonal, multilayer, arrays of graphite bricks, with each brick allowed to rock by design relative to each other in accordance with the boundary conditions. A 35 000 DOF, nonlinear finite element model of the core created by Atkins Nuclear, was analysed on a high performance computing facility at the University of Bristol, and a corresponding 8 t physical model, equipped with 3200 data acquisition channels, was built and tested on the University of Bristol 6‐DOF shaking table. In this paper, the two models are subjected to a series of (1) synthetic earthquake and (2) idealised harmonic input motions. The experimental data are used to compare and verify the two models and explore the dynamics of the core. A kinematic model of the response is also developed based solely on geometric constraints. The results are presented in the form of response maps and graphs. Important conclusions are drawn as to the dynamics and earthquake response of such systems, which inform numerical model validation. It is found that contrary to the case of a small number of rocking blocks that exhibit highly complex response patterns, the behaviour of the model at hand is both smooth and repeatable. An analogy between the response of the core and that of dense granular matter exhibiting particle interlocking and dilatancy is highlighted.  相似文献   
77.
Storm sewer systems and their associated utility trenches may strongly influence the effects of urbanization on a groundwater system. This study was undertaken to identify the causes of district-wide basement infiltration in an aquitard system. It comprised widespread continuous monitoring of utility trench wells and dye tracing from storm sewer system exfiltration tests. The results indicate that a major effect of urbanization on shallow groundwater is related to storm sewer system exfiltration, which is marked by a characteristic pattern of head variations in the aquitard unrelated to distributed surface infiltration. The aquitard constrains flow from storm sewer system exfiltration to the utility trench, creating an urban flow path for groundwater discharge. Temporary buildup of water levels in the utility trench drives relatively high-velocity flow through the permeable sewer bedding material of the utility trench to a separate foundation drainage collector system, ultimately causing a severe “urban karst” effect that produces system surcharging and widespread basement water infiltration. The main conditions causing the “urban karst” are the large hydraulic conductivity ratio between the utility trench material and the aquitard, and the shallow depth and low gradient of the storm sewer system imposed by a very flat drainage basin.  相似文献   
78.
Glacial cirques are widely used palaeoenvironmental indicators, and are key to understanding the role of glaciers in shaping mountain topography. However, notable uncertainty persists regarding the rate and timing of cirque erosion. In order to address this uncertainty, we analyse the dimensions of 2208 cirques in Britain and Ireland and model ice accumulation to investigate the degree of coupling between glacier occupation times and cirque growth. Results indicate that during the last ~120 ka, cirques were glacier-free for an average of 52.0 ± 21.2 ka (43 ± 18%); occupied by small (largely cirque-confined) glaciers for 16.2 ± 9.9 ka (14 ± 8%); and occupied by large glaciers, including ice sheets, for 51.8 ± 18.6 ka (43 ± 16%). Over the entire Quaternary (i.e. 2.6 Ma), we estimate that cirques were glacier-free for 1.1 ± 0.5 Ma; occupied by small glaciers for 0.3 ± 0.2 Ma; and occupied by large glaciers for 1.1 ± 0.4 Ma. Comparing occupation times to cirque depths, and calculating required erosion rates, reveals that continuous cirque growth during glacier occupation is unlikely. Instead, we propose that cirques attained much of their size during the first occupation of a non-glacially sculpted landscape (perhaps during the timeframe of a single glacial cycle). During subsequent glacier occupations, cirque growth may have slowed considerably, with the highest rates of subglacial erosion focused during periods of marginal (small glacier) glaciation. We propose comparatively slow rates of growth following initial cirque development because a ‘least resistance’ shape is formed, and as cirques deepen, sediment becomes trapped subglacially, partly protecting the bedrock from subsequent erosion. In support of the idea of rapid cirque growth, we present evidence from northern British Columbia, where cirques of comparable size to those in Britain and Ireland developed in less than 140 ka. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
79.
Lewis  Matt J.  Palmer  Tamsin  Hashemi  Resa  Robins  Peter  Saulter  Andrew  Brown  Jenny  Lewis  Huw  Neill  Simon 《Ocean Dynamics》2019,69(3):367-384
Ocean Dynamics - The combined hazard of large waves occurring at an extreme high water could increase the risk of coastal flooding. Wave-tide interaction processes are known to modulate the wave...  相似文献   
80.
A survey of the modern physical setting of Lake El’gygytgyn, northeastern Siberia, is presented here to facilitate interpretation of a 250,000-year climate record derived from sediment cores from the lake bottom. The lake lies inside a meteorite impact crater that is approximately 18 km in diameter, with a total watershed area of 293 km2, 110 km2 of which is lake surface. The only surface water entering the lake comes from the approximately 50 streams draining from within the crater rim; a numbering system for these inlet streams is adopted to facilitate scientific discussion. We created a digital elevation model for the watershed and used it to create hypsometries, channel networks, and drainage area statistics for each of the inlet streams. Many of the streams enter shallow lagoons dammed by gravel berms at the lakeshore; these lagoons may play a significant role in the thermal and biological dynamics of the lake due to their higher water temperatures (>6°C). The lake itself is approximately 12 km wide and 175 m deep, with a volume of 14.1 km3. Water temperature within a column of water near the center of this oligotrophic, monomictic lake never exceeded 4°C over a 2.5 year record, though the shallow shelves (<10 m) surrounding the lake can reach 5°C in summer. Though thermally stratified in winter, the water appears completely mixed shortly after lake ice breakup in July. Mean annual air temperature measured about 200 m from the lake was −10.3°C in 2002, and an unshielded rain gage there recorded 70 mm of rain in summer of 2002. End of winter snow water equivalent on the lake was approximately 110 mm in May 2002. Analysis of NCEP reanalysis air temperatures (1948–2002) reveals that the 8 warmest years and 10 warmest winters have occurred since 1989, with the number of days below −30°C dropping from a pre-1989 mean of 35 to near 0 in recent years. The crater region is windy as well as cold, with hourly wind speeds exceeding 13.4 m s−1 (30 mph) typically at least once each month and 17.8 m s−1 (40 mph) in winter months, with only a few calm days per month; wind may also play an important role in controlling the modern shape of the lake. Numerous lines of evidence suggest that the physical hydrology and limnology of the lake has changed substantially over the past 3.6 million years, and some of the implications of these changes on paleoclimate reconstructions are discussed. This is the second in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号