首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   3篇
测绘学   1篇
大气科学   2篇
地球物理   20篇
地质学   29篇
海洋学   8篇
天文学   15篇
综合类   1篇
自然地理   4篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   8篇
  2005年   2篇
  2004年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
61.
Molecular dynamics (MD) simulations have been used to calculate the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2 (CMAS) using an interatomic potential model (CMAS94), which is composed of pairwise additive Coulomb, van der Waals, and repulsive interactions. The crystals studied, total of 27, include oxides, Mg meta- and ortho-silicates, Al garnets, and various Ca or Al bearing silicates, with the coordination number of cations ranging 6 to 12 for Ca, 4 to 12 for Mg, 4 to 6 for Al, and 4 and 6 for Si. In spite of the simplicity of the CMAS94 potential and the diversity of the structural types treated, MD simulations are quite satisfactory in reproducing well the observed structural data, including the crystal symmetries, lattice parameters, and average and individual nearest neighbour Ca-O, Mg-O, Al-O, and Si-O distances. In addition MD simulated bulk moduli of crystals in the CMAS system compare well with the observed values.  相似文献   
62.
Titan, the largest satellite of Saturn, has a thick nitrogen/methane atmosphere with a thick global organic haze. A laboratory analogue of Titan's haze, called tholin, was formed in an inductively coupled plasma from nitrogen/methane=90/10 gas mixture at various pressures ranging from 13 to 2300 Pa. Chemical and optical properties of the resulting tholin depend on the deposition pressure in cold plasma. Structural analyses by IR and UV/VIS spectroscopy, microprobe laser desorption/ionization mass spectrometry, and Raman spectroscopy suggest that larger amounts of aromatic ring structures with larger cluster size are formed at lower pressures (13 and 26 Pa) than at higher pressures (160 and 2300 Pa). Nitrogen is more likely to incorporate into carbon networks in tholins formed at lower pressures, while nitrogen is bonded as terminal groups at higher pressures. Elemental analysis reveals that the carbon/nitrogen ratio in tholins increases from 1.5-2 at lower pressures to 3 at 2300 Pa. The increase in the aromatic compounds and the decrease in C/N ratio in tholin formed at low pressures indicate the presence of the nitrogen-containing polycyclic aromatic compounds in tholin formed at low pressures. Tholin formed at high pressure (2300 Pa) consists of a polymer-like branched chain structure terminated with CH3, NH2, and CN with few aromatic compounds. Reddish-brown tholin films formed at low pressures (13-26 Pa) shows stronger absorptions (almost 10 times larger k-value) in the UV/VIS range than the yellowish tholin films formed at high pressures (160 and 2300 Pa). The tholins formed at low pressures may be better representations of Titan's haze than those formed at high pressures, because the optical properties of tholin formed at low pressures agree well with that of Khare et al. (1984a, Icarus 60, 127-137), which have been shown to account for Titan's observed geometric albedo. Thus, the nitrogen-containing polycyclic aromatic compounds we find in tholin formed at low pressure may be present in Titan's haze. These aromatic compounds may have a significant influence on the thermal structure and complex organic chemistry in Titan's atmosphere, because they are efficient absorbers of UV radiation and efficient charge exchange intermediaries. Our results also indicate that the haze layers at various altitudes might have different chemical and optical properties.  相似文献   
63.
The connectivity between the interannual salinity variations in the Tsushima and Cheju Straits has been investigated on the basis of historical hydrographic data. Salinity in the Cheju Strait correlates positively with that in the western channel of the Tsushima Strait, but does not show a significant correlation with that in the eastern channel. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses of temperature and salinity in the Cheju Strait revealed that salinity in the strait is associated with the cold bottom water in summer. Drastic freshening in the Cheju Strait occurs in a period when the Cheju Current intensifies. The results allow us to hypothesize that the mechanism of interannual salinity variations in the Cheju Strait and western channel of the Tsushima Strait is as follows. The intrusion of cold bottom water into the Cheju Strait in summer intensifies the Cheju Current by increasing the baroclinicity. Since colder bottom water develops a stronger eastward surface current, the larger volume of the Changjiang diluted water is drawn into the strait, which results in a lower salinity condition in the Cheju Strait. As the water in the Cheju Strait flows into the western channel of the Tsushima Strait, salinity in the western channel varies synchronously. This hypothesis is supported by SVD analysis of temperature in the Cheju Strait and salinity in the Tsushima Strait. The salinity condition in the East China Sea is suggested to be another important influence on salinity in the western channel of the Tsushima Strait.  相似文献   
64.
This study clarified the effects of measurement noise on identification of soil properties from vertical array observation of seismic waves. In order to evaluate the sensitivity of the unknown parameter with respect to error caused by noise, the amplitude of a transfer function was used to formulate the evaluation function in the frequency domain. Also the logarithmic amplitude was used to formulate the evaluation function and compare the sensitivity between the two types of amplitude expressions. A numerical experiment, based on a simple-structured ground model, showed that these evaluation functions produced satisfactory results which were in good agreement with identified results obtained by the measurement data contaminated by artificially generated errors. The present theory, when applied to actual earthquake records, proved useful in evaluating the influence of the non-linearity of soil characteristics. © 1997 by John Wiley & Sons, Ltd.  相似文献   
65.
In sharp contrast with the global trend in population growth, certain developed countries are expected to experience rapid national population declines. Considering future land use scenarios that include depopulation is necessary to evaluate changes in ecosystem services that affect human well‐being and to facilitate comprehensive strategies for balancing rural and urban development. In this study, we applied a population‐projection‐assimilated predictive land use modeling (PPAP‐LM) approach, in which a spatially explicit population projection was incorporated as a predictor in a land use model. To analyze the effects of future population distributions on land use, we developed models for five land use types and generated projections for two scenarios (centralization and decentralization) under a shrinking population in Japan during 2015–2050. Our results suggested that population centralization promotes the compaction of built‐up areas and the expansion of forest and wastelands, while population decentralization contributes to the maintenance of a mixture of forest and cultivated land.  相似文献   
66.
Fractional coordinates and anisotropic temperature factors of atoms in berlinite, AlPO4 with the quartz topology, were successfully simulated in a molecular dynamics simulation (MDS) at high temperatures. Time-dependent and time-averaged atomic order parameters were analyzed in detail with the aid of spectral densities calculated from trajectory data. These parameters show characteristic behavior of the order-disorder regime for a structure change, where atoms spend most of the time oscillating around the 1-sites (or 2-sites) in the low temperature α-phase, but oscillate over both sites in the higher temperature α-phase and the β-phase. In the spectral density functions calculated for atom order parameters, a nearly zero-frequency excitation, which is accompanied by the emergence of large-scale 1 and 2 clusters, appears at the Γ point of the Brillouin zone below the transition point T o, and increases in intensity up to T o. A low-lying optic branch along Γ-M, which is strongly temperature dependent in the small q-region, is another characteristic of the spectral density functions for the β phase. The spectrum at Γ continuously reduces its frequency from 0.6 THz at temperatures far above T o to nearly 0 THz at temperatures approaching T o from above. The dynamical behavior in β berlinite rapidly but continuously changes from that in less oscillatory clusters in the vicinity of T o to that in the typical β phase at temperatures departing from T o. Received: 10 August 1998 / Revised, accepted: 18 February 1999  相似文献   
67.
We simulated quartz-type GeO2 and investigated its high-pressure transformation using the molecular dynamics (MD) simulation method with a model potential. The calculated results under hydrostatic compression indicated that a pressure-induced amorphization of quartz-type GeO2 originated from the mechanical instability of the quartz lattice as, in previous theoretical studies of SiO2. Furthermore, quartz-type GeO2 directly transformed to a rutile-like structure with only subtle displacements of ions under σ x y imposed shear stressed decompression. This is the first reproduction of the quartz-to-rutile transformation. A possible pathway of this transition is proposed in this study. Received: 14 April 1999 / Revised, accepted: 11 August 1999  相似文献   
68.
The gas permeability of 11 ordinary chondrites was measured at various gas pressures (0.5-2.5 bars) under confining pressures up to 120 bars. The gas permeability ranges from less than a nanodarcy to a few millidarcies. There is a positive correlation between the permeability and the porosity. The permeability decreased by as much as 50% when the confining pressure was increased from 10 to 100 bars, suggesting that the permeability of some chondrites is partly due to cracks. A linear relation between gas flow pressure dependence and confining pressure dependence of the gas permeability is observed, suggesting that on average, crack apertures are larger than pore spaces. The permeability of heavily-shocked chondrites is less than that of mildly shocked chondrites. Using the measured permeability data we estimated the size of a possible shocked-chondrite precursor body.  相似文献   
69.
Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional “onion-shell” model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a “multiple-parent bodies” model, according to which each petrologic type of chondrite comes from a different parent body.  相似文献   
70.
We show that the surface of a planet growing by planetesimal impact is heated over the melting temperature of the surface materials due to the blanketing effect of an impact induced H2O atmosphere with the present H2O abundance of the Earth even when the accretion time is as long as 108 years. Hence, a magma ocean covering the entire surface was formed on the Earth and Moon and other terrestrial planets during their formations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号