首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   12篇
  国内免费   3篇
测绘学   7篇
大气科学   17篇
地球物理   43篇
地质学   68篇
海洋学   12篇
天文学   36篇
自然地理   17篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   5篇
  2017年   9篇
  2016年   14篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   11篇
  2011年   18篇
  2010年   8篇
  2009年   29篇
  2008年   13篇
  2007年   8篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有200条查询结果,搜索用时 625 毫秒
121.
The Titan Saturn System Mission (TSSM) concept is composed of a TSSM orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the probe/lake lander. One overarching goal of TSSM is to explore in situ the atmosphere and surface of Titan. The mission has been prioritized as the second Outer Planets Flagship Mission, the first one being the Europa Jupiter System Mission (EJSM). TSSM would launch around 2023–2025 arriving at Saturn 9 years later followed by a 4-year science mission in the Saturn system. Following delivery of the in situ elements to Titan, the TSSM orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys before entering into a dedicated orbit around Titan. The Titan montgolfière aerial vehicle under consideration will circumnavigate Titan at a latitude of ~20° and at altitudes of ~10 km for a minimum of 6 months. The probe/lake lander will descend through Titan’s atmosphere and land on the liquid surface of Kraken Mare (~75° north latitude). As for any planetary space science mission, and based on the Cassini–Huygens experience, Earth-based observations will be synergistic and enable scientific optimization of the return of such a mission. Some specific examples of how this can be achieved (through VLBI and Doppler tracking, continuous monitoring of atmospheric and surface features, and Direct-to-Earth transmission) are described in this paper.  相似文献   
122.
Saturn’s satellite Titan is a particularly interesting body in our solar system. It is the only satellite with a dense atmosphere, which is primarily made of nitrogen and methane. It harbours an intricate photochemistry, that populates the atmosphere with aerosols, but that should deplete irreversibly the methane. The observation that methane is not depleted led to the study of Titan’s methane cycle, starting with its atmospheric part. The features that inhabit Titan’s atmosphere can last for timescales varying from year to day. For instance, the reversal of the north–south asymmetry is linked to the 16-year seasonal cycle. Diurnal phenomena have also been observed, like a stratospheric haze enhancement or a possible tropospheric drizzle. Furthermore, clouds have been reported on Titan since 1993. From these first detections and up to now, with the recent inputs from the Cassini–Huygens mission, clouds have displayed a large range of shapes, altitudes, and natures, from the flocky tropospheric clouds at the south pole to the stratiform ones in the northern stratosphere. It is still difficult to compose a clear picture of the physical processes governing these phenomena, even though of lot of different means of observation (spectroscopy, imaging) are available now. We propose here an overview of the phenomena reported between 1993 and 2008 in the low atmosphere of Titan, with indications on the location, altitude, and their characteristics in order to give a perspective of our up-to-date understanding of Titan’s meteorological manifestations. We shall focus mainly on direct imaging observations, from both space- and ground-based facilities. All of these observations, published in more than 30 different refereed papers to date, allow us to build a precise chronology of Titan’s atmospheric changes (including the north–south asymmetry, diurnal and seasonal effects, etc). Since the interpretation is at an early stage, we only briefly mention some of the current theories regarding the features’ nature.  相似文献   
123.
124.
125.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   
126.
Holocene Lake Mega-Chad (LMC) was the largest late Quaternary water-body in Africa. The development of this giant paleo-lake is related to a northward shift of the isohyetes interpreted as evidence for an enhanced Monsoon (African Humid Period). Numerous preserved coastal features have been described all around the LMC shore. Such features reveal the main paleo-hydrodynamical tendencies. In the context of a closed water-body like LMC, hydrodynamics are forced mainly by winds. We use a three-dimensional numerical model (SYMPHONIE) to simulate the mean hydrodynamics in LMC under both Harmattan-like (northeasterly trade winds) and Monsoon-like (southwesterly winds) forcings. The northern part of LMC displays coastal features, such as sand spits, that are consistent with the simulations forced by Harmattan-like winds. Geomorphic features related to Monsoon-driven hydrodynamics are not clearly expressed. They could have developed during the early stage of LMC but subsequently reworked. At the time of sand-spit building, Harmattan-like driven hydrodynamics prevailed and related coastal features were preferentially preserved in the sedimentary record.  相似文献   
127.
128.
Frequently preserved in archaeological and palaeontological sites, the tiny size of small-mammal remains favours percolations into underlying layers along stratigraphic sequences. This is one of the various post-depositional processes that may affect the integrity of the original deposits and therefore the subsequent scientific interpretations. Recent developments in sample preparation offer the possibility of detecting intrusive episodes through the absolute dating of minute amounts of bone (down to 10 mg), meaning that isolated elements (such as mandibles in this case) are sufficient to obtain reliable radiocarbon dates if collagen is moderately to well preserved. The radiocarbon dates obtained here for small-mammal bones (recovered from pre-Bølling to recent deposits) and their comparison with previous dates obtained from other sources (large-mammal bones, charcoal, botanical samples, etc.), with different protocols and instruments, illustrate the potential of small-mammal dating to reveal (and eventually contribute a solution to) stratigraphical issues in different archaeological contexts.  相似文献   
129.
The development of U-series nuclides for investigating weathering processes has been significantly stimulated by the analytical improvement made over the last decades in measuring the 238U series with intermediate half-lives (i.e., 234U–230Th–226Ra). It is proposed in this paper to present principles and methods that are now being developed to determine weathering rates from the study of U-series nuclides in soils and weathering profiles. Mathematical approaches, developed to calculate such rates, are based on some implicit assumptions that are also presented and must be kept in mind if one wants to correctly interpret the obtained ages.  相似文献   
130.
The geochemical study of springs and lake waters from the Ol’khon Region, Siberia, confirms the strong chemical variability of these water samples, more particularly regarding their salinity. Such variability does not result from a simple mixing process between surface freshwaters and deeper saline waters. The variability, observed at the scale of a few square kilometers, would preferentially result from a secondary concentration processes (evaporation and/or cryogenesis) of lake waters of variable intensity from one lake to another. The U-disequilibria data suggest that the duration of the secondary process is certainly an important parameter to be considered to account for the variable salinity of these lakes. The data indicate that the lakes, however modest in size, could be as old as several ky, confirming therefore that the lake sedimentary deposits could represent relevant paleoenvironmental recorders for the last thousands years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号