全文获取类型
收费全文 | 490篇 |
免费 | 22篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 26篇 |
大气科学 | 93篇 |
地球物理 | 117篇 |
地质学 | 161篇 |
海洋学 | 22篇 |
天文学 | 50篇 |
综合类 | 3篇 |
自然地理 | 43篇 |
出版年
2023年 | 4篇 |
2022年 | 4篇 |
2021年 | 13篇 |
2020年 | 15篇 |
2019年 | 11篇 |
2018年 | 21篇 |
2017年 | 18篇 |
2016年 | 33篇 |
2015年 | 18篇 |
2014年 | 28篇 |
2013年 | 47篇 |
2012年 | 20篇 |
2011年 | 24篇 |
2010年 | 25篇 |
2009年 | 32篇 |
2008年 | 15篇 |
2007年 | 21篇 |
2006年 | 17篇 |
2005年 | 21篇 |
2004年 | 15篇 |
2003年 | 9篇 |
2002年 | 3篇 |
2001年 | 13篇 |
2000年 | 8篇 |
1999年 | 6篇 |
1998年 | 5篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1992年 | 8篇 |
1991年 | 5篇 |
1990年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1979年 | 1篇 |
1978年 | 3篇 |
1977年 | 4篇 |
1975年 | 2篇 |
1971年 | 1篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有515条查询结果,搜索用时 15 毫秒
451.
Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 × 10−13 to 7.16 × 10−12 mol Hg (mg C)−1 m−2s−1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface. 相似文献
452.
Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling 总被引:1,自引:0,他引:1
Diana Rechid Thomas J. Raddatz Daniela Jacob 《Theoretical and Applied Climatology》2009,95(3-4):245-255
The aim of this study was to develop an advanced parameterization of the snow-free land surface albedo for climate modelling describing the temporal variation of surface albedo as a function of vegetation phenology on a monthly time scale. To estimate the effect of vegetation phenology on snow-free land surface albedo, remotely sensed data products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra platform measured during 2001 to 2004 are used. The snow-free surface albedo variability is determined by the optical contrast between the vegetation canopy and the underlying soil surface. The MODIS products of the white-sky albedo for total shortwave broad bands and the fraction of absorbed photosynthetically active radiation (FPAR) are analysed to separate the vegetation canopy albedo from the underlying soil albedo. Global maps of pure soil albedo and pure vegetation albedo are derived on a 0.5° regular latitude/longitude grid, re-sampling the high-resolution information from remote sensing-measured pixel level to the model grid scale and filling up gaps from the satellite data. These global maps show that in the northern and mid-latitudes soils are mostly darker than vegetation, whereas in the lower latitudes, especially in semi-deserts, soil albedo is mostly higher than vegetation albedo. The separated soil and vegetation albedo can be applied to compute the annual surface albedo cycle from monthly varying leaf area index. This parameterization is especially designed for the land surface scheme of the regional climate model REMO and the global climate model ECHAM5, but can easily be integrated into the land surface schemes of other regional and global climate models. 相似文献
453.
In order to understand Late Glacial high lake levels in the dry Andes of Northern Chile, recent short ‐ to medium‐term fluctuations in the water budget of present lakes and brines (salars) and their relationship with the atmospheric circulation were investigated. A time sequence of four Landsat‐MSS images between November 1983 and August 1984 was analysed in terms of changing water surface and water volume of several lakes and salars. The variations of the open water bodies were interpreted as a result of the spatial pattern of summer and winter precipitation. Furthermore a method to determine water depth and water salinity of the very shallow salars and lakes by correlating field measurements and digital Landsat‐TM data is described. The resulting model to compute water depth was also applied to the MSS‐sequence, showing good results. 相似文献
454.
The stratigraphical occurrence of 35 known species from the Upper Cretaceous and Danian of Southern Limburg is presented based on existing collections and newly collected material. Corals are relatively rare, except in the Meerssen Member of the Maastricht Formation. Two faunas were recognised in the Meerssen Member: a fauna dominated by Cyclolites cancellata at the base of this member – which coincides with the sequence boundary of the third-order sequence cycle TA1.1 of Haq et al. (1988) – and a fauna dominated by mushroom-shaped and encrusting colonies at the top of the transgressive systems tract of the same sequence cycle. 相似文献
455.
Petra Döll Mathias Fritsche Annette Eicker Hannes Müller Schmied 《Surveys in Geophysics》2014,35(6):1311-1331
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions. 相似文献
456.
Katja Eder Laura M. Otter Limei Yang Dorrit E. Jacob Julie M. Cairney 《Geostandards and Geoanalytical Research》2019,43(3):385-395
In this study atom probe tomography was used to study nacre, an important biocomposite material that is challenging to prepare and analyse by atom probe and, when successful, yields data that is challenging to interpret. It was found that these challenges mainly arise from the insulating and heterogeneous nano‐scale properties of nacre. We outline our current best practice for preparing and running atom probe tips, such as using a low acceleration voltage (< 3 kV) and current (≤ 50 pA) to avoid damage to the microstructure, and using transmission electron microscopy to confirm that the region of interest is located close to the apex of the atom probe tip. Optimisation of the preparation parameters led to several successful atom probe experiments, with one of the data sets containing part of an organic membrane and others showing organic inclusions within the reconstruction. 相似文献
457.
Sylvain Nguyen † Reda Baina Mathias Alerini ‡ Gilles Lambaré Vincent Devaux Mark Noble 《Geophysical Prospecting》2008,56(5):613-625
Depth velocity model building remains a difficult step within the seismic depth imaging sequence. Stereotomography provides an efficient solution to this problem but was limited until now to a picking of seismic data in the prestack time un-migrated domain. We propose here a method for stereotomographic data picking in the depth migrated domain. Picking in the depth migrated domain exhibits the advantage of a better signal-to-noise ratio and of a more regular distribution of picked events in the model, leading to a better constrained tomographic inverse problem. Moreover, any improvement on the velocity model will improve the migrated results, again leading to improved picking. Our strategy for obtaining a stereotomographic dataset from a prestack depth migration is based on migration of attributes (and not on a kinematic demigration approach!). For any locally coherent event in the migrated image, migration of attributes allows one to compute ray parameter attributes corresponding to the specular reflection angle and dip. For application to stereotomography, the necessary attributes are the source/receiver locations, the traveltime and the data slopes. For the data slope, when the migration velocity model is erroneous, some additional corrections have to be applied to the result of migration of the attributes. Applying these corrections, our picking method is theoretically valid whatever the quality of the migration velocity model. We first present the theoretical aspects of the method and then validate it on 2D synthetic and real seismic reflection data sets. 相似文献
458.
Mathias Versichele Tijs Neutens Manuel Claeys Bouuaert Nico Van de Weghe 《Transactions in GIS》2014,18(5):687-703
Certain datasets on moving objects are episodic in nature – that is, the data is characterized by time gaps during which the position of the object is unknown. In this article, a model is developed to study the sparsely sampled network‐constrained movement of several objects by calculating both potential and feasible (i.e. more likely) co‐presence opportunities over time. The approach is applied to the context of a static sensor network, where the location of an object is only registered when passing a sensor location along a road network. Feasibility is incorporated based on the deviation from the shortest path. As an illustration, the model is applied to a large Bluetooth tracking dataset gathered at a mass event. The model output consists of maps showing the temporal evolution of the distribution of feasible co‐presence opportunities of tracked visitors over the network (i.e. the number of visitors that could have been present together). We demonstrate the model's usefulness in studying the movement and distribution of a crowd over a study area with relatively few sampling locations. Finally, we discuss the results with a special emphasis on the distinction between feasible and actual presence, the need for further validation and calibration, and the performance of the implementation. 相似文献
459.
Martin Suklitsch Andreas Gobiet Heimo Truhetz Nauman Khurshid Awan Holger Göttel Daniela Jacob 《Climate Dynamics》2011,37(1-2):377-390
This study describes typical error ranges of high resolution regional climate models operated over complex orography and investigates the scale-dependence of these error ranges. The results are valid primarily for the European Alpine region, but to some extent they can also be transferred to other orographically complex regions of the world. We investigate the model errors by evaluating a set of 62 one-year hindcast experiments for the year 1999 with four different regional climate models. The analysis is conducted for the parameters mean sea level pressure, air temperature (mean, minimum and maximum) and precipitation (mean, frequency and intensity), both as an area average over the whole modeled domain (the “Greater Alpine Region”, GAR) and in six subregions. The subregional seasonal error ranges, defined as the interval between the 2.5th percentile and the 97.5th percentile, lie between ?3.2 and +2.0 K for temperature and between ?2.0 and +3.1 mm/day (?45.7 and +94.7%) for precipitation, respectively. While the temperature error ranges are hardly broadened at smaller scales, the precipitation error ranges increase by 28%. These results demonstrate that high resolution RCMs are applicable in relatively small scale climate impact studies with a comparable quality as on well investigated larger scales as far as temperature is concerned. For precipitation, which is a much more demanding parameter, the quality is moderately degraded on smaller scales. 相似文献
460.
Improved estimates of the amount of subsurface gas hydrates are needed for natural resource, geohazard, and climate impact assessments. To evaluate gas hydrate saturation from seismic methods, the properties of pure gas hydrates need to be known. Whereas the properties of sediments, specifically sands, and hydrate‐bearing sediments are well studied, the properties of pure hydrates are largely unknown. Hence, we present laboratory ultrasonic P‐wave velocity and attenuation measurements on pure tetrahydrofuran hydrates as they form with reducing temperatures from 25°C to 1°C under atmospheric pressure conditions. Tetrahydrofuran hydrates, with structure II symmetry, are considered as proxies for the structure I methane hydrates because both have similar effects on elastic properties of hydrate‐bearing sediments. We find that although velocity increased, the waveform frequency content and amplitude decreased after the hydrate formation reaction was complete, indicating an increase in P‐wave attenuation after hydrate formation. When the tetrahydrofuran hydrate was cooled below the freezing point of water, velocity and quality factor increased. Nuclear Magnetic Resonance results indicate the presence of water in the “pure hydrate” samples above the water freezing point, but none below. The presence of liquid water between hydrate grains most likely causes heightened attenuation in tetrahydrofuran hydrates above the freezing point of water. In naturally occurring hydrates, a similarly high attenuation might relate to the presence of water. 相似文献