首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   6篇
  国内免费   2篇
测绘学   7篇
大气科学   6篇
地球物理   43篇
地质学   56篇
海洋学   2篇
天文学   1篇
综合类   2篇
自然地理   14篇
  2024年   2篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   8篇
  2018年   14篇
  2017年   7篇
  2016年   12篇
  2015年   16篇
  2014年   7篇
  2013年   12篇
  2012年   4篇
  2011年   12篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有131条查询结果,搜索用时 31 毫秒
81.
New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake resisting systems are idealized as prismatic cantilever flexural-shear beams. Floor masses are considered as lumped masses at each story level and masses of columns are evenly distributed along the cantilever beam. Soil-structure interaction is considered as axial and rotational springs, whose potential energy are formulated and incorporated into overall potential energy of the structure. Subsequently, natural frequency equations are derived on the basis of energy conservation principle. The effect of axial forces on natural frequency is also considered in the proposed formulas. Using the method presented in this study, natural frequencies are computed using a simplified method with no complex numerical modeling. The proposed formulas are verified via experimental and numerical methods. Close agreement between the results from these three approaches are observed. Furthermore, the effects of panel zone flexibility, continuity plates and doubler plates on the natural frequencies of buildings are investigated.  相似文献   
82.
Fracture zones on the Earth’s surface are important elements in the understanding of plate motion forces, the dynamics of the subsurface fluid flow, and earthquake distributions. However, good exposures of these features are always lacking in arid regions, characterized by flat topography and where sand dunes extensively cover the terrain. During field surveys these conditions, in many cases, hinder the proper characterization of such features. Therefore, an approach that identifies the regional fractures as lineaments on remotely-sensed images or shaded digital terrain models, with its large scale synoptic coverage, could be promising.In the present work, a segment tracing algorithm (STA), for lineament detection from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery, and the data from the Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation model (DEM), has been applied in the Siwa region, located in the northwest of the Western Desert of Egypt. The objectives are to analyze the spatial variation in orientation of the detected linear features and its relation to the hydrogeologic setting in the area and the underlying geology, and to evaluate the performance of the algorithm applied to the ETM+ and the DEM data.Detailed structural analysis and better understanding of the tectonic evolution of the area could provide useful tools for hydrologists for reliable groundwater management and development planning. The results obtained have been evaluated by the structural analysis of the area and field observations. Four major vertical fracture zones were detected corresponding to two conjugate sets of strike-slip faults that governed the surface, and subsurface environments of the lakes in the region, and these correlate well with the regional tectonics.  相似文献   
83.
Natural Resources Research - This study developed a new perspective of artificial neural networks using dimensional analysis to be applicable to certain prediction problems. To this end,...  相似文献   
84.
The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials. Received: 7 April 1997 / Accepted: 30 July 1997  相似文献   
85.
86.
Efficient procedures for reliability upgrading of existing lifeline networks for post-earthquake serviceability are presented. A simple method is developed to determine critical components of the network whose strengthening improves the network reliability for specified serviceability criteria. Measures of effectiveness of strengthening each component are also introduced. Based on critical components and measures of effectiveness, step-by-step upgrading procedures are proposed. Both connectivity and minimum-flow serviceability criteria may be specified. Two upgrading objectives considered are achieving a specified target reliability and reducing the total costs of upgrading plus expected losses due to failure of the lifeline. A hypothetical application to a water-distribution system in the San Francisco Bay Area illustrates the proposed method.  相似文献   
87.
1 INTRODUCTION Scouring in the bend ways leads to deep sections at the toe of the outer bank of the bend. The presenceof secondary currents and the greater depths at the outer bank cause high velocity along the outer bank.The high velocity and shear stres…  相似文献   
88.
Breakwaters provide a calm sea basin for ships and protect harbor facilities by reflecting wave energy toward the open sea area. Their performance under environmental loadings is the main concern for coastal engineers. Liquefaction susceptibility of loose sediments of seabed threatens performance of these structures. The article investigates soil liquefaction effects on the seismic performance of Iran liquefied natural gas (LNG) composite breakwater. Performance-based design method, considering both grade of the breakwater and acceptable level of damages, was selected as design philosophy. Liquefaction-induced damages to the breakwater were determined by numerical analysis. Since the obtained level of deformations did not meet allowable damages, soil improvement against liquefaction was considered. Different improvement patterns were proposed based on distribution of pore pressure ratio (ru) beneath the breakwater to control its seismic performance. This investigation revealed that the most important area for soil improvement is located near the toes of breakwater to control the slope instability and performance of the breakwater.  相似文献   
89.
The ultimate goal of reservoir simulation in reservoir surveillance technology is to estimate long-term production forecasting and to plan development and management of petroleum fields. However, maintaining reliable reservoir models which honour available static and dynamic data, involve inherent risks due to the uncertainties in space and time of the distribution of hydrocarbons inside reservoirs. Recent applications have shown that these uncertainties can be reduced by quantitative integration of seismic data into the reservoir modelling workflows to identify which areas and reservoir attributes of the model should be updated. This work aims using seismic data to reduce ambiguity in calibrating reservoir flow simulation model with an uncertain petro-elastic model, proposing a circular workflow of inverted seismic impedance (3D and 4D) and engineering studies, with emphasis on the interface between static and dynamic models. The main contribution is to develop an updating procedure for adjusting reservoir simulation response before using it in the production forecasting and enhance the interpretive capability of reservoir properties. Accordingly, the workflow evaluates consistency of reservoir simulation model and inverted seismic impedance, assisted by production history data, to close the loop between reservoir engineering and seismic domains. The methodology is evaluated in a complex, faulted, sandstone reservoir, the Norne benchmark field, where a significant reservoir behaviour understanding (about the static and dynamic reservoir properties) is obtained towards the quantitative integration of seismic impedance data. This leads to diagnosis of the reservoir flow simulation reliability and generation of an updated simulation model consistent with observed seismic and well production history data, as well as a calibrated petro-elastic model. Furthermore, as Norne Field is a benchmark case, this study can be considered to enrich the discussions over deterministic or probabilistic history matching studies.  相似文献   
90.
Soil salt accumulation is a widespread problem leading to diminished crop yield and threatening food security in many regions of the world. The soil salinization problem is particularly acute in areas that lack adequate soil water drainage and where a saline shallow water table (WT) is present. In this study, we present laboratory-scale column experiments, extending over a period of more than 400 days that focus on the processes contributing to soil salinization. We specifically examine the combined impact of soil compaction, surface water application model and water quality on salt dynamics in the presence of a saline shallow WT. The soil columns (60 cm height and 16 cm diameter) were packed with an agricultural soil with bulk densities of 1.15 and 1.34 g/cm−3 for uncompacted and compacted layers, respectively, and automatically monitored for water content, salinity and pressure. Two surface water compositions are considered: fresh (deionized, DI) and saline water (~3.4 mS/cm). To assess the sensitivity of compaction on salt dynamics, the experiments were numerically modelled with the HYDRUS-1D computer program. The results show that the saline WT led to rapid salinization of the soil column due to capillarity, with the salinity reaching levels much higher than that at the WT. However, compaction layer provided a barrier that limited the downwards moisture percolation and solute transport. Furthermore, the numerical simulations showed that the application of freshwater can temporarily reverse the accumulation of salts in agricultural soils. This irrigation strategy can help, in the short-term, alleviate soil salinization problem. The soil hydraulic properties, WT depth, water quality, evaporation demand and the availability of freshwater all play a role in the practicability of such short-term solutions. The presence of a saline shallow WT would, however, rapidly reverse these temporary measures, leading to the recurrence of topsoil salinization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号