首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   16篇
  国内免费   3篇
测绘学   3篇
大气科学   11篇
地球物理   74篇
地质学   44篇
海洋学   42篇
天文学   22篇
综合类   2篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   7篇
  2015年   12篇
  2014年   3篇
  2013年   8篇
  2012年   14篇
  2011年   5篇
  2010年   12篇
  2009年   9篇
  2008年   13篇
  2007年   6篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   10篇
  2002年   8篇
  2001年   8篇
  2000年   1篇
  1999年   4篇
  1998年   7篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1977年   3篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有203条查询结果,搜索用时 14 毫秒
51.
In drylands, water deficit is the primary factor limiting plant growth. In the present study, surface energy balance and plant growth (above‐ground and below‐ground biomass) were measured continuously during the 2002 growing season in semiarid grassland in the northern part of Kazakhstan, Central Asia. Although there was above normal total rainfall during the 2002 growing season (May–November; 244 mm over 183 days), there was a dry period during July and August. Evaporative water was effectively supplied by precipitation and surface soil moisture during the wet season (May and June), during which time above‐ground biomass increased. During the early stages of the dry period, mature plants were likely to tap deeper sources of soil moisture, representing stored snowmelt water. As the soil moisture content decreased during the summer dry period due to the high levels of evapotranspiration and lack of precipitation, the evaporative fraction and above‐ground biomass rapidly decreased, whereas the below‐ground biomass increased. These results suggest that in summer, soil moisture acts to store water, and that soil moisture is essential for plant growth as a direct source of water during the dry period in natural grasslands in the Kazakhstan steppe. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
52.
53.
Ground-based optical observations of D1 and D2 line emissions from Jupiter’s sodium nebula, which extend over several hundreds of jovian radii, were carried out at Mt. Haleakala, Maui, Hawaii using a wide field filter imager from May 19 to June 21, 2007. During this observation, the east-west asymmetry of the nebula with respect to the Io’s orbital motion was clearly identified. Particularly, the D1+D2 brightness on the western side of Jupiter is strongly controlled by the Io phase angle. The following scenario was developed to explain this phenomenon as follows: First, more ionospheric ions like NaX+, which are thought to produce fast neutral sodium atoms due to a dissociative recombination process, are expected to exist in Io’s dayside hemisphere rather than in the nightside one. Second, it is expected that more NaX+ ionospheric ions are picked up by the jovian co-rotating magnetic field when Io’s leading hemisphere is illuminated by the Sun. Third, the sodium atom ejection rate varies with respect to Io’s orbital position as a result of the first two points. Model simulations were performed using this scenario. The model results were consistent with the observation results, suggesting that Io’s ionosphere is expected to be controlled by solar radiation just like Earth.  相似文献   
54.
We have developed a near-field vector beam measurement system covering the range of frequencies from 385 to 500 GHz. The measurement set-up is capable of measurements with dynamic range exceeding 50 dB and amplitude and phase stability respectively of 0.1 dB/h and 1 degree/5 min at room temperature. Beam patterns of the ALMA band 8 corrugated horns and receiver optics block were measured at room temperature and lately compared with physical optics calculations obtained in the far-field. Both co-polar and cross-polar beam patterns of a qualification model of the ALMA band 8 cartridge cooled in a cartridge-test-cryostat have also been measured in the near-field as a detector of a submillimeter vector network analyzer. The measurements presented in this work refer to the lowest, middle and upper frequencies of band 8. The comparisons between software model and experimental measurements at these frequencies show good agreement down to ?30 dB for the main polarization component. The cross-polarization level of the beam propagating through the receiver optics block was also characterized. We found that a cross-polarization level better than ?28 dB can be achieved at all measured frequencies. The measured beam pattern of this receiver corresponds to efficiency of greater than 92% at the sub reflector (diameter of 750 mm) of the ALMA 12 m optics.  相似文献   
55.
56.
Modal properties of tuned mass damper (TMD)-structure two-degree-of-freedom (2DOF) linear systems are studied employing a perturbation technique. Using the perturbation solutions, formulas relevant to designing the TMD for various types of loading are obtained; they are expressed as a function of mass ratio, tuning ratio, damping ratio of the TMD and damping ratio of the structure. Equivalent additional dampings of the structure due to the TMD are derived for random and harmonic forces. Matched expressions of equivalent damping, which are valid for detuned, i.e. non-optimal, conditions are also presented. The stability boundary of TMD-structure systems subject to linear self-excited forces is derived in a closed form. Using the perturbation solutions, procedures for optimizing the TMD parameters for various types of loading are explained and the optimal values are derived. The formulas obtained in this study can be used with good accuracy for mass ratios less than 0.02.  相似文献   
57.
Effective porosity value was analyzed from the tritium concentration of sampled groundwater using a three-dimensional groundwater-flow and advection-dispersion code based on the finite element method. The effective porosity value was about 10%. Porosity values measured from core samples were 7–15%. The groundwater flow velocity estimated from the tritium concentrations was about 1 × 10–5 cm s–1. Therefore, during the low groundwater flow velocity condition, effective porosity and porosity values were the same. At the same test site, a 0.48% effective porosity value, determined by another tracer test injecting Br solution into the aquifer during groundwater level change, was smaller than the porosity value when the flow velocity was 1.8×10–2 cm s–1. Thus the effective porosity value is concluded to be due to groundwater flow velocity. The specific yield value was calculated to be 0.6% by the total volume of tunnel seepage water and the total volume of the rock unsaturated during tunnel construction. However, as pore water continued to be drained after the groundwater level change was completed, the specific yield value became larger than 0.6%. Thus specific yield value is concluded to be due to drainage time.  相似文献   
58.
The interaction forces of the linear unbounded soil in a non-linear soil-structure-interaction analysis can be calculated recursively, starting directly from the dynamic-stiffness coefficients in the frequency domain. Two possibilities of choosing a recursive equation are discussed.
  • (i) The recursive equation in the frequency domain. For each frequency, the interaction force at a specific time station is expressed as a function of the corresponding interaction force at the previous time station and of the displacements at the current time station and at the two most recent past time stations. This recursive evaluation of the convolution integral. which can be derived using the z-transformation, is rigorous. By using interpolation in the frequency domain, an approximate procedure results, which leads to a significant reduction in computational effort.
  • (ii) The recursive equation in the time domain. By approximating the dynamic-stiffness coefficients as the ratios of two polynomials in frequency using a curve-fitting technique based on the least-squares method and by applying the partial-fraction expansion and using the z-transformation, the recursive coefficients can be determined explicitly. Alternatively, the ratio of two polynomials can also be transformed to an ordinary differential equation together with the initial conditions.
The recursive equations using interpolation in the frequency domain and based on a ratio of two polynomials lead to a reduction in the computational effort of one and up to three orders of magnitude, respectively.  相似文献   
59.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   
60.
This study shows how the use of increasing model complexity allows us to hypothesize about dominant streamflow mechanisms in two small Brazilian forested basins. Nine different structures from SUPERFLEX, an objective framework to systematically increase hydrological model complexity, were tested and we extended the flexible modelling methodology to error models as well. We show that applying a rigorous methodology in a model evaluation framework, with residual analysis and control of model complexity, is essential for testing a model as a hypothesis for dominant hydrological controls. Our results indicate that the model architecture was more important than the increase in the number of model parameters. Better performing models were those with a parallel structure, which confirms our a priori belief about the dominant runoff mechanisms of the studied catchments, characterized by a rapid response to rainfall, but also a constant river discharge fed by water storage on the thick soil layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号