首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   19篇
  国内免费   13篇
测绘学   2篇
大气科学   23篇
地球物理   98篇
地质学   159篇
海洋学   96篇
天文学   93篇
综合类   3篇
自然地理   22篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   12篇
  2017年   6篇
  2016年   13篇
  2015年   10篇
  2014年   16篇
  2013年   19篇
  2012年   16篇
  2011年   18篇
  2010年   12篇
  2009年   22篇
  2008年   16篇
  2007年   24篇
  2006年   25篇
  2005年   19篇
  2004年   26篇
  2003年   31篇
  2002年   10篇
  2001年   25篇
  2000年   21篇
  1999年   18篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   9篇
  1992年   3篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   7篇
  1986年   10篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   2篇
  1980年   5篇
  1976年   2篇
  1975年   3篇
  1971年   2篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有496条查询结果,搜索用时 15 毫秒
181.
The interannual variations of sea level at Chichi-jima and five other islands in the subtropical North Pacific are calculated for 1961–95 with a model of Rossby waves excited by wind. The Rossby-wave forcing is significant east of 140°E. Strong forcing of upwelling (downwelling) Rossby wave occurs during El Niño (La Niña) and warm (cold) water anomaly in the eastern equatorial Pacific. The first and second baroclinic modes of Rossby wave are more strongly generated than the barotropic mode in the study area. A higher vertical mode of Rossby wave propagates more slowly and is more decayed by eddy dissipation. The best coefficient of vertical eddy dissipation is determined by comparing the calculated sea level with observation. The variation in sea level at Chichi-jima is successfully calculated, in particular for the long-term change of the mean level between before and after 1986 with a rise in 1986 as well as the variations with periods of two to four years after 1980. It is concluded that variations of sea level at Chichi-jima are produced by wind-forced Rossby waves, the first baroclinic wave primarily and the barotropic wave secondly. The calculation for other islands is less successful. Degree of the success in calculation almost corresponds to a spatial difference in quantity of wind data, and seems to be determined by quality of wind data.  相似文献   
182.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
183.
Evidence for ultrahigh‐pressure metamorphism (UHPM) in the Rhodope metamorphic complex comes from occurrence of diamond in pelitic gneisses, variably overprinted by granulite facies metamorphism, known from several areas of the Rhodopes. However, tectonic setting and timing of UHPM are not interpreted unanimously. Linking age to a metamorphic stage is a prerequisite for reconstruction of these processes. Here, we use monazite in diamond‐bearing gneiss from Chepelare (Bulgaria) to date the diamond‐forming UHPM event in the Central Rhodopes. The diamond‐bearing gneiss comes from a strongly deformed, lithologically heterogeneous zone (Chepelare Mélange) sandwiched between two migmatized orthogneiss units, known as Arda‐I and Arda‐II. Diamond, identified by Raman micro‐spectroscopy, shows the characteristic band mostly centred between 1332 and 1330 cm?1. The microdiamond occurs as single grains or polyphase diamond + carbonate inclusions, rarely with CO2. Thermodynamic modelling shows that garnet was stable at UHP conditions of 3.5–4.6 GPa and 700–800 °C, in the stability field of diamond, and was re‐equilibrated at granulite facies/partial melting conditions of 0.8–1.2 GPa and 750–800 °C. The texture of monazite shows older central parts and extensive younger domains which formed due to metasomatic replacement in solid residue and/or overgrowth in melt domains. The monazite core compositions, with distinctly lower Y, Th and U contents, suggest its formation in equilibrium with garnet. The U–Th–Pb dating of monazite using electron microprobe analysis yielded a c. 200 Ma age for the older cores with low Th, Y, U and high La/Nd ratio, and a c. 160 Ma age for the dominant younger monazite enriched in Th, Y, U and HREE. The older age of c. 200 Ma is interpreted as the timing of UHPM, whereas the younger age of c. 160 Ma as granulite facies/partial melting overprint. Our results suggest that UHPM occurred in Late Triassic to Early Jurassic time, in the framework of collision and subduction of continental crust after the closure of Paleotethys.  相似文献   
184.
In this study, we conducted a numerical simulation of a rapid development of an arctic cyclone (AC) that appeared in June 2008 using a cloud resolving global model, Nonhydrostatic ICosahedral Atmospheric Model (NICAM). We investigated the three dimensional structure and intensification mechanism of the simulated AC that developed to the minimum sea level pressure of 971 hPa in the model. According to the result, the AC indicates a barotropic structure with a warm core in the lower stratosphere and a cold core in the troposphere. The development of the AC is accompanied by an intense mesoscale cyclone (MC) showing baroclinic structure with a marked local arctic front. The upper level warm core of the AC is formed by an adiabatic heating associated with the downdraft in the lower stratosphere. The rapid development of the AC is caused by the combination of the intensification of the upper level warm core and the merging with the baroclinically growing MC in the lower level. The merging of the AC and MC and the vertical vortex coupling with the upper air polar vortex are the most important mechanisms for the rapid development of the arctic cyclone.  相似文献   
185.
The distribution of organic carbon and its relationship to vegetation development were examined on a glacier foreland near Ny-Ålesund, Svalbard (79°N). In a 0.72-km2 area, we established 43 study plots on three line transects along primary succession from recently deglaciated area to old well-vegetated area. At each plot, we measured the type and percent coverage of vegetation types. The organic carbon content of vegetation, organic soil, and mineral soil samples was determined based on their organic carbon concentration and bulk density. Cluster analysis based on vegetation coverage revealed five types of ground surfaces representing variations in the amounts and allocation patterns of organic carbon. In the later stages of succession, 7%–24% and 31%–40% of organic carbon was contained in the organic and deeper soil layers, respectively. Organic carbon storage in the later stages of succession ranged from 1.1 – 7.9 kg C m−2. A larger amount of organic carbon, including ancient carbon in a raised beach deposit, was expected to be contained in much deeper soil layers. These results suggest that both vegetation development and geological history affect ecosystem carbon storage and that a non-negligible amount of organic carbon is distributed in this High Arctic glacier foreland.  相似文献   
186.
We investigate statistical distributions of differences in gravitational-lensing deflections between two light rays, the so-called lensing excursion angles. A probability distribution function of the lensing excursion angles, which plays a key role in estimates of lensing effects on angular clustering of objects (such as galaxies, quasi-stellar objects and also the cosmic microwave background temperature map), is known to consist of two components: a Gaussian core and an exponential tail. We use numerical gravitational-lensing experiments in a ΛCDM cosmology for quantifying these two components. We especially focus on the physical processes responsible for generating these two components. We develop a simple empirical model for the exponential tail which allows us to explore its origin. We find that the tail is generated by the coherent lensing scatter by massive haloes with   M > 1014  h −1 M  at   z < 1  and that its exponential shape arises due to the exponential cut-off of the halo mass function at that mass range. On scales larger than 1 arcmin, the tail does not have a practical influence on the lensing effects on the angular clustering. Our model predicts that the coherent scatter may have non-negligible effects on angular clustering at subarcminute scales.  相似文献   
187.
188.
By using the Cowling approximation, quasi-radial modes of rotating general relativistic stars are computed along equilibrium sequences from non-rotating to maximally rotating models. The eigenfrequencies of these modes are decreasing functions of the rotational frequency. The eigenfrequency curve of each mode as a function of the rotational frequency has discontinuities, which arise from the avoided crossing with other curves of axisymmetric modes.  相似文献   
189.
190.
The first-year Wilkinson Microwave Anisotropy Probe data suggest a high optical depth for Thomson scattering of  0.17 ± 0.04  , implying that the Universe was reionized at an earlier epoch than previously expected. Such early reionization is likely to be caused by ultraviolet (UV) photons from first stars, but it appears that the observed high optical depth can be reconciled within the standard structure formation model only if star formation in the early Universe was extremely efficient. With normal star formation efficiencies, cosmological models with non-Gaussian density fluctuations may circumvent this conflict as high density peaks collapse at an earlier epoch than in models with Gaussian fluctuations. We study cosmic reionization in non-Gaussian models and explore to what extent, within available constraints, non-Gaussianities affect the reionization history. For mild non-Gaussian fluctuations at redshifts of 30 to 50, the increase in optical depth remains at a level of a few per cent and appears unlikely to aid significantly in explaining the measured high optical depth. On the other hand, within available observational constraints, increasing the non-Gaussian nature of density fluctuations can easily reproduce the optical depth and may remain viable in underlying models of non-Gaussianity with a scale-dependence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号