首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   19篇
  国内免费   13篇
测绘学   2篇
大气科学   23篇
地球物理   98篇
地质学   159篇
海洋学   96篇
天文学   93篇
综合类   3篇
自然地理   22篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   12篇
  2017年   6篇
  2016年   13篇
  2015年   10篇
  2014年   16篇
  2013年   19篇
  2012年   16篇
  2011年   18篇
  2010年   12篇
  2009年   22篇
  2008年   16篇
  2007年   24篇
  2006年   25篇
  2005年   19篇
  2004年   26篇
  2003年   31篇
  2002年   10篇
  2001年   25篇
  2000年   21篇
  1999年   18篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   9篇
  1992年   3篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   7篇
  1986年   10篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   2篇
  1980年   5篇
  1976年   2篇
  1975年   3篇
  1971年   2篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有496条查询结果,搜索用时 15 毫秒
171.
新疆阿勒泰地区发育了红柱石-矽线石型递增变质带,由绿泥石-黑云母带、黑云母-石榴石带、石榴石-十字石带、十字石-红柱石带和矽线石带组成,根据石榴石成分环带、变质与变形关系、矿物共生组合演化等特征,将变质作用分为峰前期、峰期和峰后期3个演化阶段。峰前期、峰期为连续的递增变质过程,形成典型的中-低压过渡型递增变质带,峰后期属于退变质过程。据石榴石一斜长石一黑云母-白云母-石英组合内部一致地质温压计估算出峰期温度-压力:T=580℃~670℃,P一0.4GPa~0.5GPa。变质作用演化具有顺时针的PTt轨迹,代表陆壳有一定程度的构造增厚,但幅度不大,没有大规模的陆壳俯冲或拆沉作用,这种增厚可能以陆壳的构造叠置机制为主。总体相当于地体间斜向走滑兼有一定垂直分量的拼合过程的地球动力学机制。  相似文献   
172.
The Hyuga-nada Sea, south-eastern Kyushu, Japan, is located between a strong (Nankai Trough) and a weak interplate coupling zone (Ryukyu Trench). Over the past 400 years this area has only experienced Magnitude 7·5 earthquakes or smaller and associated small-scale tsunamis. However, this short historical record most likely does not include the full range of high magnitude, low frequency giant earthquakes that might have occurred in the region. Thus, it is still unclear whether giant earthquakes and their associated tsunamis have occurred in this region. This paper reports on a prehistoric tsunami deposit discovered in a coastal lowland in south-eastern Kyushu facing the Hyuga-nada Sea. There is a reddish-brown pumiceous layer preserved in a non-marine, organic-rich mud sequence obtained from onshore sediment cores. This layer is recognized as the ca 4600 year old Kirishima-Miike tephra (that is now placed around 4500 years ago) sourced from Mount Kirishima, southern Kyushu. Another whitish pumiceous layer is evident below the Kirishima-Miike tephra in almost all of the sediment cores. A relatively high percentage of marine and brackish diatoms is recorded within this lower pumiceous layer (but not in the surrounding muds or in the overlying Kirishima-Miike tephra), indicating a marine or beach sediment source. Plant material obtained from organic-rich mud immediately below the event layer was dated to ca 4430 to 4710 cal yr bp , providing a limiting-maximum age for this marine incursion event. The presence of marine diatoms below the event layer is probably explained by pre-seismic subsidence. An absence of the resting spore of the planktonic brackish diatom Cheatoceros and the appearance of the freshwater diatom Eunotia serra immediately above the event layer probably represents a marked change to a relatively low-salinity environment. Assuming that there were no significant local geomorphological changes, such as drainage obstruction caused by formation of a new barrier spit, it is considered that co-seismic or immediate post-seismic uplift are the most likely explanations for this notable environmental change. Based on the crustal movements noted before and after the marine incursion, this event is interpreted here as an earthquake-generated tsunami. Moreover, because of these notable seismic crustal movements the tsunamigenic earthquake probably occurred immediately offshore of the study site.  相似文献   
173.
We present a new column chemistry technique for the quantitative separation of heavy lanthanoids by an ultra‐fine‐grained LN resin (20–50 µm) with a specific emphasis on the purification of Er and Yb for their isotopic analysis. To achieve the quantitative separation of Er and Yb within a reasonable timescale, flash column chromatography was applied, where the column was attached to a newly designed vacuum box system, thus accelerating the elution speed by ten times compared with that of the normal column procedure operated by gravity flow. The recovery yields of Er and Yb were confirmed to be approximately 100%, which is important to suppress the effect of the mass‐independent fractionation of the Er and Yb isotopes during chromatography. Additionally, we have developed precise Er and Yb isotope measurements by thermal ionisation mass spectrometry (TIMS) using multistatic and/or dynamic methods. Moreover, in most cases, the Er and Yb isotope compositions of the measured four terrestrial rock samples were indistinguishable from those of the commercially available Er and Yb Alfa Aesar solutions. The new method presented in this work will be useful for future studies on heavy lanthanoids in various geological materials.  相似文献   
174.
Pacific ocean circulation based on observation   总被引:2,自引:1,他引:1  
A thorough understanding of the Pacific Ocean circulation is a necessity to solve global climate and environmental problems. Here we present a new picture of the circulation by integrating observational results. Lower and Upper Circumpolar Deep Waters (LCDW, UCDW) and Antarctic Intermediate Water (AAIW) of 12, 7, and 5 Sv (106 m3s−1) in the lower and upper deep layers and the surface/intermediate layer, respectively, are transported to the North Pacific from the Antarctic Circumpolar Current (ACC). The flow of LCDW separates in the Central Pacific Basin into the western (4 Sv) and eastern (8 Sv) branches, and nearly half of the latter branch is further separated to flow eastward south of the Hawaiian Ridge into the Northeast Pacific Basin (NEPB). A large portion of LCDW on this southern route (4 Sv) upwells in the southern and mid-latitude eastern regions of the NEPB. The remaining eastern branch joins nearly half of the western branch; the confluence flows northward and enters the NEPB along the Aleutian Trench. Most of the LCDW on this northern route (5 Sv) upwells to the upper deep layer in the northern (in particular northeastern) region of the NEPB and is transformed into North Pacific Deep Water (NPDW). NPDW shifts southward in the upper deep layer and is modified by mixing with UCDW around the Hawaiian Islands. The modified NPDW of 13 Sv returns to the ACC. The remaining volume in the North Pacific (11 Sv) flows out to the Indian and Arctic Oceans in the surface/intermediate layer.  相似文献   
175.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   
176.
177.
We use numerical simulations of a (480 Mpc  h −1)3 volume to show that the distribution of peak heights in maps of the temperature fluctuations from the kinematic and thermal Sunyaev–Zeldovich (SZ) effects will be highly non-Gaussian, and very different from the peak-height distribution of a Gaussian random field. We then show that it is a good approximation to assume that each peak in either SZ effect is associated with one and only one dark matter halo. This allows us to use our knowledge of the properties of haloes to estimate the peak-height distributions. At fixed optical depth, the distribution of peak heights resulting from the kinematic effect is Gaussian, with a width that is approximately proportional to the optical depth; the non-Gaussianity comes from summing over a range of optical depths. The optical depth is an increasing function of halo mass and the distribution of halo speeds is Gaussian, with a dispersion that is approximately independent of halo mass. This means that observations of the kinematic effect can be used to put constraints on how the abundance of massive clusters evolves, and on the evolution of cluster velocities. The non-Gaussianity of the thermal effect, on the other hand, comes primarily from the fact that, on average, the effect is larger in more massive haloes, and the distribution of halo masses is highly non-Gaussian. We also show that because haloes of the same mass may have a range of density and velocity dispersion profiles, the relation between halo mass and the amplitude of the thermal effect is not deterministic, but has some scatter.  相似文献   
178.
179.
The distribution of inorganic nitrogen compounds and the metabolic rates of these compounds by microorganisms as a whole were investigated in the Seas of Hiuchi and Bingo. The results obtained are as follows:
  1. Of inorganic nitrogen compounds, the contents in sea water, those in bottom muds, the uptake or liberation rates of microorganisms as a whole in sea water, and the liberation rates from bottom muds to sea water are 0.2~4.0 μg at. N/l, 3~60 μg at.N/100 g, 0.01~0.5 μg at.N//lhr, and 0.3~1.9 μg at.N/100 cm2/hr, respectively, and these contents or rates of ammonia usually are the largest of these inorganic nitrogen compounds.
  2. From the above-mentioned results and the others, it is suggested that the nitrogen in the seas circulates mainly in sea water itself and the course of nitrogen cycle, which passes through bottom muds, is not so important, and further that, of the cycle of inorganic nitrogen compounds, the main course is the course which ammonia is liberated from organic nitrogen compounds and it is immediately uptaked by microorganisms, and the course which it is oxidized to nitrate and the others are not so important.
  相似文献   
180.
A joint element is proposed, which can simulate the three phases of behaviour of an impermeable layer over a liquefied sand layer. The analysis tracks the post-liquefaction reconsolidation of the sand, the simultaneous development of a water film between the layers and the settlements resulting from the subsequent drainage of the water film. The element is incorporated in a finite element program, which can be used to simulate the behaviour of layered systems. The effectiveness of the program is demonstrated by simulation of the performance of a model soil deposit of two layers in a centrifuge test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号