首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   6篇
  国内免费   10篇
大气科学   16篇
地球物理   43篇
地质学   61篇
海洋学   64篇
天文学   20篇
综合类   2篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有218条查询结果,搜索用时 0 毫秒
81.
Variations of water and flow in Sagami Bay in relation to the Kuroshio path variations are examined by using 100m-depth temperature and salinity data from 25 stations as well as sea level data from five stations (Minami-Izu, ItÔ, Ôshima, Aburatsubo, Mera). In regard to temperature, anomalies from the mean seasonal variations are used. Results show that water properties are clearly different between the three typical paths of the Kuroshio. The difference is more remarkable in temperature than in salinity; temperature is higher during the typical large-eander (LM) path, and lower during the offshore non-large-meander (NLM) path, compared with the nearshore NLM path. Temperature anomaly and salinity distributions, as well as the Ôshima minus Minami-Izu and Ôshima minus Mera sea-level differences strongly suggest that the flows during the typical LM path are distributed as hitherto described in past studies, that is, water in the mouth region of the bay flows clockwise around Ôshima from the west channel to the east channel, and a counterclockwise eddy exists in the interior. On the other hand, flows during the nearshore and offshore NLM paths seem to be quite different from those during the typical LM path; velocities are very weak, and the directions of circulation is frequently reversed. This tendency also can be seen during parts of LM period in which the Kuroshio takes a non-typical LM path.Water properties in Sagami Bay are most characteristic during transitions between nearshore and offshore NLM paths. During transitions from nearshore to offshore NLM paths, temperatures are extremely high as a whole in the bay, while during reverse transitions, both temperatures and salinities are very low in the entire region.  相似文献   
82.
Transitions between the three typical paths of the Kuroshio south of Japan (the nearshore and offshore non-large-meander paths and the large-meander path) are described using sea level data at Miyake-jima and HachijÔ-jima in the Izu Islands and temperature data at a depth of 200 m observed from 1964 to 1975 and in 1980.In transitions between the nearshore and offshore non-large-meander paths the variation of the Kuroshio path occurs first in the region off Enshû-nada between the Kii Peninsula and the Izu Ridge and subsequently over the ridge. In the nearshore to offshore transition the offshore displacement of the path occurs first off Enshû-nada and then develops southeastwardly in the direction of HachijÔ-jima. In the reverse transition shoreward displacement occurs first off Enshû-nada and then throughout the region west and east of the Izu Ridge. The position of the Kuroshio south of Cape Shiono-misaki (the southernmost tip of the Kii Peninsula) is almost fixed near the coast throughout these transition periods, and significant variations of the Kuroshio path only occur east of the cape. The nearshore to offshore and offshore to nearshore transitions can be estimated to take about 25 and 35 days, respectively, during which the variation of the Kuroshio path over the Izu Ridge occurs for the last 11 and 25 days.The transitions between the non-large-meander and large-meander paths show that the large-meander path is mostly formed from the nearshore non-large-meander path and always changes to the offshore non-large-meander path.  相似文献   
83.
Although the Tsushima Current exhibits a complicated meander in the interior region of the Japan Sea, its path is more regular in the southwest region near the Tsushima Strait, and three branches have often been recognized there by many investigators. However, the detailed structures and temporal variabilities of these branches have not been clarified, and so they are studied here by analysing temperature, salinity and sea level data. It is shown that the existence of the first branch (the nearshore branch along the Japanese coast) can be detected from salinity distributions at least during the period from March to August. The third branch (the Eastern Korean Current) exists in all seasons. On the other hand, the second branch (the offshore branch) is seasonally variable and can be identified only in summer from June to August. Along the Japanese coast of southwest Japan Sea, the main pycnocline intersects the gentle slope on the shelf at a depth between 150 and 200 m. The first branch is found on the coastal side of the line where the main pycnocline intersects the bottom slope. On the other hand, the second branch is formed just on the seaward side of this line. Sea level differences in the Tsushima Strait, i.e., between Hakata and Izuhara and between Izuhara and Pusan, show that the seasonal variation of the surface velocity (or volume transport) is small in the eastern channel and large in the western channel. The period during which the surface velocity and volume transport in the western channel increase corresponds well to the period during which the second branch exists. These results suggest that the effects of bottom topography and oceanic stratification in the Japan Sea as well as the time variation of inflow through the western channel of the Tsushima Strait play important roles in the formation of the second branch.  相似文献   
84.
Variations of current velocity of the Kuroshio are examined using the 1965–1983 sea-level difference between Naze and Nishinoomote, located on the offshore and onshore sides of the Kuroshio in the Tokara Strait south of Kyûshû.Interannual variations of Kuroshio velocity are large, especially at periods longer than five years and around 2.1 years. They are almost determined by those of sea level on the offshore side of the Kuroshio. They are highly coherent with the offshore sea level at periods longer than 1.7 years, and incoherent with the onshore sea level at periods longer than 2.8 years.The mean seasonal variation averaged for 19 years is at its maximum in July and at its minimum in the second half of October, with a sharp decrease in August and September. However, such a variation does not repeat every year. Amplitude, dominant period and phase are greatly different by year, and they can be roughly divided into four groups: small-amplitude group, semiannual-period group, and two annual-period groups with different phases. The only feature found in almost all years is a weak velocity from September to December.The amplitude of seasonal variation tends to be large in the formation years of the large meander (LM) of the Kuroshio and small during the LM period. It is also large in the years preceding El Niño, and diminishes remarkably in El Niño years.Kuroshio velocity in the Tokara Strait is incoherent with position of the Kuroshio axis over the Izu Ridge, but highly coherent with 70-day variations of coastal sea levels which are dominant during the LM period.  相似文献   
85.
The distribution of organic carbon and its relationship to vegetation development were examined on a glacier foreland near Ny-Ålesund, Svalbard (79°N). In a 0.72-km2 area, we established 43 study plots on three line transects along primary succession from recently deglaciated area to old well-vegetated area. At each plot, we measured the type and percent coverage of vegetation types. The organic carbon content of vegetation, organic soil, and mineral soil samples was determined based on their organic carbon concentration and bulk density. Cluster analysis based on vegetation coverage revealed five types of ground surfaces representing variations in the amounts and allocation patterns of organic carbon. In the later stages of succession, 7%–24% and 31%–40% of organic carbon was contained in the organic and deeper soil layers, respectively. Organic carbon storage in the later stages of succession ranged from 1.1 – 7.9 kg C m−2. A larger amount of organic carbon, including ancient carbon in a raised beach deposit, was expected to be contained in much deeper soil layers. These results suggest that both vegetation development and geological history affect ecosystem carbon storage and that a non-negligible amount of organic carbon is distributed in this High Arctic glacier foreland.  相似文献   
86.
Recent advances in three-dimensional numerical simulations of mantle convection have aided in approximately reproducing continental movement since the Pangea breakup at 200 Ma. These have also led to a better understanding of the thermal and mechanical coupling between mantle convection and surface plate motion and predictions of the configuration of the next supercontinent. The simulations of mantle convection from 200 Ma to the present reveals that the development of large-scale cold mantle downwellings in the North Tethys Ocean at the earlier stage of the Pangea breakup triggered the northward movement of the Indian subcontinent. The model of high temperature anomaly region beneath Pangea resulting from the thermal insulation effect support the breakup of Pangea in the real Earth time scale, as also suggested in previous geological and geodynamic models. However, considering the low radioactive heat generation rate of the depleted upper mantle, the high temperature anomaly region might have been generated by upwelling plumes with contribution of deep subducted TTG(tonalite-trondhjemite-granite) materials enriched in radiogenic elements. Integrating the numerical results of mantle convection from 200 Ma to the present, and from the present to the future, it is considered that the mantle drag force acting on the base of continents may be comparable to the slab pull force, which implies that convection in the shallower part of the mantle is strongly coupled with surface plate motion.  相似文献   
87.
Some aspects of the biology of the micronektonic fishesCyclothone pallida andC. acclinidens are described on the basis of samples taken during a series of 20 cruises from December 1982 to November 1985 at a fixed station near the center of Sagami Bay, Central Japan.C. pallida is a regular component of theCyclothone population in Sagami Bay, being found in more than 90% of the samples. On the other hand,C. acclinidens was encountered sporadically, being found in less than 25% of the samples. The depth range ofC. pallida is estimated to be about 400–1,000 m. It spawns mainly during the spring and summer in Sagami Bay.C. pallida releases about 1,000–3,000 eggs and may spawn several times during its life span. On the average, it reaches 18.5 mm standard length (SL) in one year, 24 mm SL in two years and 29.5 mm SL in three years during its subadult stage. Extrapolation of the growth curve suggests that males and females attain first sexual maturity in three to four years at 30–35 mm and five to six years at 40–45 mm SL, respectively.Cyclothone pallida is concluded to have a regular life cycle in Sagami Bay. It remains uncertain whether or notC. acclinidens reproduces in this area.  相似文献   
88.
Yui  Kouketsu  Masaki  Enami 《Island Arc》2010,19(1):165-176
Aragonite and omphacite-bearing metapelite occurs in the albite–biotite zone of the Togu (Tohgu) area, Besshi region, Sambagawa metamorphic belt, central Shikoku, Japan. This metapelite consists of alternating graphite-rich and graphite-poor layers that contain garnet, phengite, chlorite, epidote, titanite, calcite, albite, and quartz. A graphite-poor layer contains a 1.5-cm ivory-colored lens that mainly consists of phengite, calcite, albite, and garnet. Aragonite, omphacite, and paragonite occur as inclusions in the garnet of the ivory lens. The aragonite has a composition that is close to the CaCO3 end-member: the FeCO3 and MnCO3 components are both less than 0.3 mol% and the SrCO3 component is about 1 mol%. The aragonite + omphacite + quartz assemblage in garnet indicates equilibrium conditions of P  > 1.1–1.3 GPa and T  = 430–550°C. Quartz grains sealed in garnet of the aragonite and omphacite-bearing sample and other metapelites in the Togu area preserve a high residual pressure that is equivalent to the Sambagawa eclogite samples. These facts suggest that: (i) the Togu area experienced eclogite facies metamorphism; and (ii) thus, eclogite facies metamorphism covered the Sambagawa belt more extensively than previously recognized.  相似文献   
89.
Analysis of CTD data from four CREAMS expeditions carried out in summers of 1993–1996 produces distinct T-S relationships for the western and eastern Japan Basin, the Ulleung Basin and the Yamato Basin. T-S characteristics are mainly determined by salinity as it changes its horizontal pattern in three layers, which are divided by isotherms of 5°C and 1°C; upper warm water, intermediate water and deep cold water. Upper warm water is most saline in the Ulleung Basin and the Yamato Basin. Salinity of intermediate water is the highest in the eastern Japan Basin. Deep cold water has the highest salinity in the Japan Basin. T-S curves in the western Japan Basin are characterized by a salinity jump around 1.2–1.4°C in the T-S plane, which was previously found off the east coast of Korea associated with the East Sea Intermediate Water (Cho and Kim, 1994). T-S curves for the Japan Basin undergo a large year-to-year variation for water warmer than 0.6°C, which occupies upper 400 m. It is postulated that the year-to-year variation in the Japan Basin is caused by convective overturning in winter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
90.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号