首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   6篇
  国内免费   10篇
大气科学   16篇
地球物理   43篇
地质学   61篇
海洋学   64篇
天文学   20篇
综合类   2篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有218条查询结果,搜索用时 0 毫秒
211.
Attachment and feeding of pelagic copepods on larvacean houses   总被引:3,自引:0,他引:3  
The attachment and feeding of pelagic copepods on discarded and occupied oikopleurid larvacean houses were investigated from May 1989 to August 1991 at an offshore station in the Nansei Islands, which is strongly influenced by the Kuroshio Current, and an inshore station in the central Seto Inland Sea.Oncaea spp.,Microsetella norvegica, and other calanoid and cyclopoid copepods were found attached onto discarded and occupied houses throughout the year at the offshore station, whereas neither discarded nor occupied houses, carried copepods at the inshore station at any time. The feeding behavior ofOncaea sp. in a discarded house was observed with a video tape recorder system.  相似文献   
212.
Abstract The Ryoke Belt is one of the important terranes in the South‐west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta‐sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian–early Jurassic). Initial ?Sr (+ 25– + 59) and ?Nd (? 2.1–?5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB‐signature, rather than those of either IAB or ACMB. The Sr–Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental‐type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr–Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr–Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental‐type lithosphere is widely represented beneath the western part of the Japanese Islands.  相似文献   
213.
Abstract Rb–Sr and K–Ar chronological studies were carried out on granitic and metamorphic rocks in the Ina, Awaji Island and eastern Sanuki districts, Southwest Japan to investigate the timing of intrusion of the granitoids in the Ryoke belt. Intrusions of 'younger' Ryoke granitic magmas took place in the Ina district between 120 Ma and 70 Ma, and cooling began immediately after the emplacement of the youngest granitic bodies. Igneous activity in Awaji Island was initiated at 100 Ma and continued to 75 Ma. Along-arc variations of Rb–Sr whole-rock isochron ages suggest that magmatism began everywhere in the Ryoke and San-yo belts at almost the same time ( ca 120 Ma). The last magmatism took place in the eastern part of both belts. Rb–Sr and K–Ar mineral ages for the granitoids young eastwards. The age data suggest that the Ryoke belt was uplifted just after the termination of igneous activity. Initial Sr and Nd isotopic ratios for the Ryoke granitoids indicate that most were derived from magmas produced in the lower crust and/or upper mantle with uniform Sr and Nd isotopic compositions. Several granitoids, however, exhibit evidence of assimilation of Ryoke metamorphic rocks or older Precambrian crustal rocks beneath the Ryoke belt.  相似文献   
214.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   
215.
A large track site with multiple,well-preserved trackways of an Early Jurassic quadrupedal ornithischian dinosaur is the first report of Moyenisauripus-like trackways from Asia,herein named Shenmuichnu...  相似文献   
216.
Spectral properties of sea levels at Naze, Nishinoomote, Kushimoto, Uragami, Miyake-jima and HachijÔ-jima are examined for the non-large-meander (February 1964 – May 1975) and large-meander (October 1975 – December 1979) periods, and the periodicity of variation of the Kuroshio path is clarified.The large meander of the Kuroshio occurs with a primary period of about 20 years and secondary period of 7 to 8. 5 years. During the non-large-meander period, the Kuroshio alternately takes the nearshore and offshore non-large-meander paths with a primary period of 1. 6–1. 8 years. This variation is moreover composed of 110-day, around 195-day and annual periods. The 110-day variation of the Kuroshio path appears to have influence on the coastal sea levels between the Kii Peninsula and the Izu Ridge;i. e., the coastal sea levels rise and fall with one-month time lag after the Kuroshio has begun to approach and leave the Japanese coast. During the large-meander period, the 70 and 110-day variations are remarkable in sea levels south of Japan except Miyake-jima and HachijÔ-jima. The 70-day variation is highly coherent throughout the south coast of Japan; the coherent area of the 110-day variation seems to be smaller.The sea-level variations at Naze and Nishinoomote are not significantly coherent for any of the periods except for annual and semiannual cycles during both the non-large-meander and large-meander periods. That is, the sea-level variations are incoherent between the onshore and offshore sides of the Kuroshio, except for seasonal variation.  相似文献   
217.
In eastern Heilongjiang, the Upper Jurassic is marine and restricted to the Suibin and Dong’an areas, where it is characterized faunally by Callovian–Volgian (Tithonian) bivalves and florally by dinoflagellates. The Lower Cretaceous is widely distributed in eastern Heilongjiang, and characterized faunally by Berriasian–Valanginian bivalves, Barremian–Albian ammonites and Aucellina, and florally by dinoflagellates. To the west, the marine facies grade into non-marine beds. Thus, in the east, for example in the Dong’an and Dajiashan areas, near the northwestern Palaeo-Pacific, the Lower Cretaceous is marine; westward, in the Yunshan, Longzhaogou, Peide, and Zhushan areas, marine and non-marine deposits alternate, whereas further west still, e.g. in the Jixi Basin, non-marine facies are intercalated with marine beds. This regional distribution is indicative of a large, shallow embayment opening eastwards to the Palaeo-Pacific; during the Early Cretaceous successive transgressive-regressive events influenced the climate and biota of eastern Heilongjiang and northeastern China. Many of the Lower Cretaceous sections contain abundant coals, demonstrating that in this region the Early Cretaceous was an important coal-forming period. Some non-marine bivalve species are common to the Lower Cretaceous Jixi Group of eastern Heilongjiang, the Jehol Group of western Liaoning and the Transbaikalian Group of Siberia, suggesting that these groups are of comparable Early Cretaceous age.  相似文献   
218.
More than 125 footprints of theropods from the Cretaceous Longwangzhuang Formation have been mapped in a preliminary study at a site in the Zhucheng region of China. The tracks represent at least three morphotypes. The largest morphotype is a large theropod (footprint length ∼30 cm) represented by a single trackway and an isolated natural cast. At least 10 trackways assigned to the new ichnospecies Corpulentapus lilasia represent a medium-sized biped (footprint length ∼13 cm) with very short, wide, robust, ‘tulip-shaped’ tracks and long steps (∼5 × footprint length), and a short central digit (III) indicating weak mesaxony. Corpulentapus trackways are narrow and theropod-like even though track morphology is convergent with the footprints of some ornithopods. The third morphotype, made by a medium-sized grallatorid track maker (ichnogenus Paragrallator), is about the same size (∼13 cm) as the robust morphotype, but far more elongate and gracile, with an elongate central digit (III) indicating strong mesaxony. This ichnotaxon requires detailed comparison with Grallator sensu stricto. The contrast in morphology between the two common morphotypes is striking and demonstrates that two distinct medium-sized taxa of presumed theropod affinity frequented the same habitat in significant numbers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号