首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   13篇
  国内免费   10篇
测绘学   1篇
大气科学   32篇
地球物理   72篇
地质学   108篇
海洋学   69篇
天文学   57篇
综合类   2篇
自然地理   15篇
  2022年   4篇
  2021年   3篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   9篇
  2016年   7篇
  2015年   5篇
  2014年   10篇
  2013年   15篇
  2012年   15篇
  2011年   16篇
  2010年   17篇
  2009年   17篇
  2008年   19篇
  2007年   18篇
  2006年   11篇
  2005年   8篇
  2004年   16篇
  2003年   15篇
  2002年   3篇
  2001年   5篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   7篇
  1986年   11篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有356条查询结果,搜索用时 265 毫秒
201.
We investigated marine and terrestrial environmental changes at the northern Japan margin in the northwestern Pacific during the last 23,000 years by analyzing biomarkers (alkenones, long-chain n-alkanes, long-chain n-fatty acids, and lignin-derived materials) in Core GH02-1030. The U 37K′-derived temperature in the last glacial maximum (LGM) centered at 21 ka was ∼10°C, which was 2°C lower than the core-top temperature (∼12°C). This small temperature drop does not agree with pollen evidence of a large air temperature drop (more than 4°C) in the Tokachi area. This disagreement might be attributed to a bias of U 37K′-derived temperature within 2.5°C by a seasonal shift in alkenone production. The U 37K′-derived temperature was significantly low during the last deglaciation. Because this cooling was significant in the Kuroshio-Oyashio transition zone, the temperature drops are attributable to the southward displacement of the Kuroshio-Oyashio boundary. Abundant lignin-derived materials, long-chain n-alkanes and long-chain n-fatty acids indicate a higher contribution of terrigenous organic matter from 17 to 12 ka. This phenomenon might have resulted from an enhanced coastal erosion of terrestrial soils due to marine transgression and/or an efficient inflow of higher plant debris to river waters from 17 to 12 ka.  相似文献   
202.
The biomass and production rate of net zooplankton were studied at eight stations in Yatsushiro Bay, Japan, monthly from May 2002 to April 2003. Based on environmental conditions, the bay was divided into three regions, viz. northern (average depth, salinity and chlorophyll a concentration: 11 m, 31.8 and 6.5 μg l−1, respectively), central (30 m, 32.8 and 3.2 μg l−1, respectively) and southern (43 m, 33.4 and 1.9 μg l−1, respectively). Net zooplankton biomass was high in warm months and low in cold ones, with annual averages of 20.2, 38.8 and 16.4 mg C m−3 in the northern, central and southern regions, respectively. Copepods were the most important constituent (>ca. 70% of net zooplankton biomass) in all regions. The northern region was characterized by the dominance of Oithona spp. in summer and Acartia spp. in winter-spring. In the central region, Microsetella norvegica was most pronounced in summer-fall. In both central and southern regions, Calanus sinicus and Eucalanus spp. dominated in winter-spring and fall, respectively. The annual average net zooplankton secondary production rate was 4.4, 7.5 and 3.9 mg C m−3d−1 in the northern, central and southern region, respectively. Combining the results from the present study with those from other collaborative works on microzooplankton allowed us to determine the trophic interactions in Yatsushiro Bay. If the secondary producers depend entirely on phytoplankton for food, their daily carbon requirement is equivalent to 12.5, 21.6 and 19.1% of the phytoplankton biomass in the respective regions.  相似文献   
203.
The recently discovered Xiaobeigou fluorite deposit is situated in the southern part of the Southern Great Xing'an Range metallogenic belt. Fluorite‐bearing veins are rather common over the whole area. So far, 11 mineralized veins have been delineated at the Xiaobeigou deposit. Orebodies of the deposit are mainly hosted in Permian and Jurassic volcano‐sedimentary rocks. The orebodies in this mining district exhibit a well‐developed vertical zonation: from top to bottom, the orebodies can be divided into upper, central, and lower zones. The central zone is the most important part for mining operations, and it shows lateral zonation of fluorite mineralization. Rare earth element (REE) contents of the investigated samples are relatively low (less than 30.2 ppm). Furthermore, the REE contents of the fluorite grains from early to late ore stages exhibit a decreasing trend. All the fluorite samples show no or slightly positive Eu anomalies. Three types of fluid inclusions (FIs) are distinguished in the quartz and fluorite samples, including pure‐liquid single‐phase (PL‐type), liquid‐rich two‐phase (L‐Type), and vapor‐rich two‐phase (V‐type) FIs. The FIs hosted in early‐stage quartz were homogenized at 159.5–260.7°C (mainly 160–240°C); their salinities range from 0.18 to 1.22 wt.% NaCl eqv. The FIs hosted in early‐stage fluorite yield slightly lower homogenization temperatures of 144.4–266.8°C (peaking at 140–220°C), which correspond to salinities of 0.18–0.88 wt.% NaCl eqv. Homogenization temperatures and salinities for the late stage are 132.5–245.8°C (mainly 160–180°C) and 0.18–1.40 wt.% NaCl eqv., respectively. Laser Raman spectroscopy of FIs shows that both the vapor and liquid compositions of the inclusions are dominated by H2O. The H–O isotopic compositions at Xiaobeigou suggest that the ore‐forming fluids are predominantly of meteoric water origin. The Xiaobeigou deposit can be classified as a typical low‐temperature hydrothermal vein‐type fluorite deposit. Combined with regional data, we infer that the fluorite mineralization occurred during the Late Mesozoic in an extensional setting.  相似文献   
204.
Fifty-eight rock chips from fifteen samples of sedimentary rocks from the Ramah Group (approximately 1.9 Ga) in northeastern Labrador, Canada, were analyzed for major and minor elements, including C and S, to elucidate weathering processes on the Earth's surface about 1.9 Ga ago. The samples come from the Rowsell Harbour, Reddick Bight, and Nullataktok Formations. Two rock series, graywackes-gray shales of the Rowsell Harbour, Reddick Bight and Nullataktok Formations, and black shales of the Nullataktok Formation, are distinguishable on the basis of lithology, mineralogy, and major and trace element chemistry. The black shales show lower concentrations than the graywackes-gray shales in TiO2 (0.3-0.7 wt% vs. 0.7-1.8 wt%), Al2O3 (9.5-20.1 wt% vs. 13.0-25.0 wt%), and sigma Fe (<1 wt% vs. 3.8-13.9 wt% as FeO). Contents of Zr, Th, U, Nb, Ce, Y, Rb, Y, Co, and Ni are also lower in the black shales. The source rocks for the Ramah Group sediments were probably Archean gneisses with compositions similar to those in Labrador and western Greenland. The major element chemistry of source rocks for the Ramah Group sedimentary rocks was estimated from the Al2O3/TiO2 ratios of the sedimentary rocks and the relationship between the major element contents (e.g., SiO2 wt%) and Al2O3/TiO2 ratios of the Archean gneisses. This approach is justified, because the Al/Ti ratios of shales generally retain their source rock values; however, the Zr/Al, Zr/Ti, and Cr/Ni ratios fractionate during the transport of sediments. The measured SiO2 contents of shales in the Ramah Group are generally higher than the estimated SiO2 contents of source rocks by approximately 5 wt%. This correction may also have to be applied when estimating average crustal compositions from shales. Two provenances were recognized for the Ramah Group sediments. Provenance I was comprised mostly of rocks of bimodal compositions, one with SiO2 contents approximately 45 wt% and the other approximately 65 wt%, and was the source for most sedimentary rocks of the Ramah Group, except for black shales of the Nullataktok Formation. The black shales were apparently derived from Provenance II that was comprised mostly of felsic rocks with SiO2 contents approximately 65 wt%. Comparing the compositions of the Ramah Group sedimentary rocks and their source rocks, we have recognized that several major elements, especially Ca and Mg, were lost almost entirely from the source rocks during weathering and sedimentation. Sodium and potassium were also leached almost entirely during the weathering of the source rocks. However, significant amounts of Na were added to the black shales and K to all the rock types during diagenesis and/or regional metamorphism. The intensity of weathering of source rocks for the Ramah Group sediments was much higher than that of typical Phanerozoic sediments, possibly because of a higher PCO2 in the Proterozoic atmosphere. Compared to the source rock values, the Fe3+/Ti ratios of many of the graywackes and gray shales of the Ramah Group are higher, the Fe2+/Ti ratios are lower, and the sigma Fe/Ti ratios are the same. Such characteristics of the Fe geochemistry indicate that these sedimentary rocks are comprised of soils formed by weathering of source rocks under an oxygen-rich atmosphere. The atmosphere about 1.9 Ga was, therefore, oxygen rich. Typical black shales of Phanerozoic age exhibit positive correlations between the organic C contents and the concentrations of S, U, and Mo, because these elements are enriched in oxygenated seawater and are removed from seawater by organic matter in sediments. However, such correlations are not found in the Ramah Group sediments. Black shales of the Ramah Group contain 1.7-2.8 wt% organic C, but are extremely depleted in sigma Fe (<1 wt% as FeO), S (<0.3 wt%), U (approximately l ppm), Mo (<5 ppm), Ni (<2 ppm), and Co (approximately 0 ppm). This lack of correlation, however, does not imply that the approximately 1.9 Ga atmosphere-ocean system was anoxic. Depletion of these elements from the Ramah Group sediments may have occurred during diagenesis.  相似文献   
205.
Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.  相似文献   
206.
We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager. We found ten faint point sources,with magnitudes as faint as 20 mag in the K-band,with around seven dwarfs.Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths,which indicates very low-mass young stellar objects.However,the results of our follow-up proper motion measure...  相似文献   
207.
Because the solar wind (SW) flow is usually super-sonic, a fast-mode bow shock (BS) is formed in front of the Earth's magnetosphere, and the Moon crosses the BS at both dusk and dawn flanks. On the other hand, behind of the Moon along the SW flow forms a tenuous region called lunar wake, where the flow can be sub-Alfvénic (and thus sub-sonic) because of its low-density status. Here we report, with joint measurement by Chang’E-1 and SELENE, that the Earth's BS surface is drastically deformed in the lunar wake. Despite the quasi-perpendicular shock configuration encountered at dusk flank under the Parker-spiral magnetic field, no clear shock surface can be found in the lunar wake, while instead gradual transition of the magnetic field from the upstream to downstream value was observed for a several-minute interval. This finding suggests that the ‘magnetic ramp’ is highly broadened in the wake where a fast-mode shock is no longer maintained due to the highly reduced density. On the other hand, observations at the 100 km altitude on the dayside show that the fast-mode shock is maintained even when the width of the downstream region is smaller than a typical scale length of a perpendicular shock. Our results suggest that the Moon is not so large to eliminate the BS at 100 km altitude on the dayside, while the magnetic field associated with the shock structure is drastically affected in the lunar wake.  相似文献   
208.
A thermal diffusive process in the Earth's core is principally enhanced by small-scale flows that are highly anisotropic because of the Earth's rapid rotation and a strong magnetic field. This means that a thermal eddy diffusivity should not be a scalar but a tensor. The effect of such anisotropic tensor diffusivity, which is to be prescribed, on dynamics in the Earth's core is investigated through numerical simulations of magnetoconvection in a rapidly rotating system. A certain degree of anisotropy has an insignificant effect on the character, like kinetic and magnetic energies, of magnetoconvection in a small region with periodic boundaries in the three directions. However, in a region with top and bottom rigid boundary surfaces, kinetic and magnetic energies of magnetoconvection can be altered by the same degree of anisotropy. This implies that anisotropic tensor diffusivity affects on dynamics in the core, in particular near the boundary surfaces.  相似文献   
209.
Initial plant colonization is critical in determining subsequent ecosystem development. In a High-Arctic oasis showing atypical “directional primary succession”, we quantified the microhabitat characteristics associated with colonization by pioneer vascular plants of a bare moraine. The study moraine, formed during the Little Ice Age, is located within the proglacial area at the southern front of Arklio Glacier, Ellesmere Island, Canada. We established two line-transects on this moraine to quantify microhabitats for vascular species. Microsites favorable for plants were concave depressions, probably increasing the likelihood of colonization. At microsites distant from stable boulders, which probably protect seeds/seedlings from wind desiccation, plant colonization was less likely. Furthermore, favorable microhabitat properties differed depending on topographical location within the moraine, suggesting that, even within a single moraine, microhabitats favorable for plant colonization are heterogeneously-distributed. This moraine was characterized by two major pioneer species, Epilobium latifolium and Salix arctica. Their species-specific microhabitat requirements highlight the importance of biotic factors in colonization processes. Favorable sites for plants are generally distributed at random in harsh environments. However, we showed that initial plant colonization is a deterministic process rather than random, indicating the possibility of non-stochastic processes even during the early phase of ecosystem development in High-Arctic ecosystems.  相似文献   
210.
In the cold semiarid Canadian prairies, groundwater recharge is focussed under numerous topographic depressions, in which snowmelt runoff converges. Agricultural land uses on the uplands surrounding the depressions affect snow accumulation, snowmelt infiltration, evapotranspiration (ET) and soil moisture dynamics, thereby influencing snowmelt runoff and depression-focussed recharge. The objective of this study is to compare the differences in hydrological processes under two common land uses in the Canadian prairies, namely grazed grass and annual crop, and examine how they affect groundwater recharge. A short-term (3 years) paired catchment study was used for detailed observation of hydrological processes in two depressions, supplemented by a longer-term (17 years) data set covering a larger scale to quantify the differences in snowmelt runoff between the two land uses. Compared to the grazed grassland, the cropland had a shorter and more intense period of ET, and root water uptake restricted to the shallower (top 0–80 cm) soil zone. The amount of snowmelt runoff was greater in the grazed grassland primarily due to a higher amount of snow accumulation, which was dictated by differences in topography. This finding was contrary to previous studies in the Canadian prairies that indicated substantially smaller snowmelt runoff in ungrazed grassland, but was consistent with the larger-scale remote sensing results, which showed only a marginal difference between grazed grasslands and croplands. Groundwater recharge rates were estimated using the chloride mass balance method for the present condition using “modern” pore water containing tritium. The rates were similar between the grazed grassland and croplands, implying similarity in snowmelt runoff characteristics. These results suggest that groundwater recharge will continue to be focussed under depressions in the future, though the amount and seasonality of recharge may be influenced by warmer winters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号