首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   2篇
  国内免费   1篇
大气科学   15篇
地球物理   26篇
地质学   14篇
海洋学   7篇
天文学   4篇
自然地理   4篇
  2024年   1篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   7篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1986年   3篇
  1984年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有70条查询结果,搜索用时 62 毫秒
41.
Standing stocks and production rates of phytoplankton and abundance of bacteria were investigated at 39 stations in the Seto Inland Sea, Japan during four crulses in October 1993, January, April and June 1994. Primary productivity was measured by the13C tracer method. Photosynthetic rate varied from 0.41 to 32.1 μgC/1/h with an average value of 4.67 μgC/l/h. Annual primary production was estimated to be 218 gC/m2/year. Annual primary production in this study was 1.8 times as high as the values which were previously reported at same area. The reason for the disagreement between our primary production value and previous values is not thought to be due to the difference of methods used for measuring primary production or the different Chl.a concentrations but to the method of estimating the primary production in the euphotic zone from thein vitro measurements. The distribution of bacterial cells in surface seawater was examined during the same cruises. Bacterial cell density ranged from 0.32 to 3.4×106 cells/ml. The density was relatively high in the eutrophic regions of Hiroshima Bay and Osaka Bay In addition, a high density of bacteria was also observed in an area within Suo Nada where Chl.a was relatively low. The disparity between Chla and bacterial density in Suo Nada suggests that bacterial abundance can be controlled by the availability of substrates other than phytoplankton exudate.  相似文献   
42.
In order to reconstruct the architectural evolution of a fault zone with heterogeneous structures, we studied the Atera Fault in Central Japan, and described the detailed mesoscopic and microscopic features of the zone. The fault zone studied consists of a 1.2‐m wide fault core of fault breccia mixed with fragments derived from welded tuff, granite, and mafic volcanic rocks. The 1.2‐m wide fault core is bordered by a western damage zone characterized by a welded tuff fault breccia and an eastern damage zone characterized by a granite cataclasite. A secondary fault core, a 30‐cm wide granite‐derived fault gouge, cross‐cuts the granite cataclasite. Although welded tuff fault breccia and granite cataclasite are also pervasively fractured and fragmented, the fault cores are significantly affected by fragment size reduction due to intense abrasive wear and comminution. The 1.2‐m wide fault core includes fragments and a sharp dark layer composed of mafic volcanic rocks, which can be correlated with neighboring 1.6 Ma volcanic rocks. This observation places a younger constraint on the age of the fault core formation. Carbonate coating on basalt fragments in the 1.2‐m wide fault core has also been fractured indicating the repetition of intense fragmentation. Bifurcated, black and gray veins near the 1.2‐m wide fault core are likely injection veins, formed by the rapid injection of fine material within fault zones during seismic events. The granite‐derived fault gouge, characterized by hard granite fragments without intense brecciation and microfracturing, in a kaolinite‐rich clay matrix, is interpreted as the most recent slip zone within the exposed fault zone. A preview of published geological and hydrological studies of several fault zones shows that clay‐rich fault cores can exhibit much lower permeability than the adjacent damage zones represented in this present case by the welded tuff fault breccia and granite cataclasite.  相似文献   
43.
Treatment of aromatic ring compounds, 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichloro-phenoxy acetic acid (2,4,5-T), and bisphenol A, in the artificial seawater, i.e. Allen seawater, was carried out by ozonation and titanium dioxide (TiO2) photocatalyst treatment. Each compound was degraded and varnished within 30 min by only ozonolysis at pH 9.0 and at 20 degrees C, while the TOC value of each compound decreased gradually but reached almost constant value, i.e. about 70-80% of the initial value, at even 30 min of ozonation time. Ozonolysis (30 min of ozonation time) followed by TiO2 photocatalyst treatment (50h of reaction time) was a very effective method for decreasing the TOC values of aromatic ring compounds in the artificial seawater. In consequence, TOC values of 2,4-D, 2,4,5-T, and bisphenol A could be reduced to about 28, 21, and 34% of their initial values, respectively.  相似文献   
44.
Recent mapping projects undertaken in Central Mongolia have revealed the widespread occurrence of radiolarian chert within a Paleozoic accretionary complex. We present the results of the first detailed tectonostratigraphic and radiolarian biostratigraphic investigations of the Gorkhi Formation in the Khangai–Khentei belt of the Central Asian Orogenic Belt.The Gorkhi Formation consists of sandstone shale, alternating sandstone and shale of turbidite affinity and chert with small amounts of siliceous shale, basalt, limestone, and clast-bearing mudstone. Radiolarian chert that is completely devoid of terrigenous clastic material is commonly associated with underlying basalt (sedimentary contact) and with conformably overlying siliceous shale and turbidite deposits. The tectonic stacking of basalt–chert and chert–turbidite successions is the most remarkable structural feature of the formation.The recovery of moderately well-preserved radiolarians and conodonts from red chert led to the recognition of four radiolarian assemblages that have a combined age range from the latest Silurian (Pridolian) to the Late Devonian (Frasnian). No age control exists for the siliceous shale, shale, and sandstone, although they are considered to be latest Devonian or slightly younger on the basis of stratigraphic relationships with underlying chert.The Gorkhi Formation has previously been interpreted as a thick sedimentary basin deposit overlying an unexposed Archean–Neoproterozoic basement; however, the stratigraphy within individual tectonic slices clearly corresponds to that of an ocean plate stratigraphy of an accretionary complex generated by the trenchward movement of an oceanic plate. From the lowermost to uppermost units, the stratigraphy comprises ocean floor basalt, pelagic deep-water radiolarian chert, hemipelagic siliceous shale, and terrigenous turbidite deposits. The biostratigraphic data obtained in the present study provide corroborating evidence for the existence of an extensive deep-water ocean that enabled the continuous sedimentation of pelagic chert over a period of nearly 50 million years. These data, together with structural data characterized by tectonic repetition of the stratigraphy, indicate that these rocks formed as an accretionary wedge along an active continental margin, possibly that of the Angara Craton. The mid-oceanic chert was probably deposited in the Northern Hemisphere portion of the Paleo–Pacific Ocean that faced the Angara Craton and the North China–Tarim blocks. Thus, we propose that subduction–accretion processes along the Paleo–Pacific rim played an important role in the accretionary growth of the active continental margin of the Angara Craton, directly influencing the evolution of the Central Asian Orogenic Belt.  相似文献   
45.
In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed for a hypothetical repository in the Canadian Shield. The assessment shows that the maximum long term radionuclide release from such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical (THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above-mentioned uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100°C; however, the stress on the container can marginally exceed the design value of 15 MPa. However, the most important finding from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing systems. Prepared for publication in Environmental Geology. DECOVALEX-THMC Special Issue.  相似文献   
46.
This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of a test tunnel associated with the tunnel sealing experiment (TSX) at the Underground Research Laboratory (URL) in Canada. Four different numerical models were applied using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters, the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increase alongside the tunnel is a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis’ coefficient, α ≈ 0.2, a porosity of n ≈ 0.007, and a relatively low permeability of ≈ 2 × 10−22 m2, which is consistent with the very tight, unfractured granite at the site.  相似文献   
47.
48.
There has been a great deal of research interest regarding changes in flow path/runoff source with increases in catchment area. However, there have been very few quantitative studies taking subscale variability and convergence of flow path/runoff source into account, especially in relation to headwater catchments. This study was performed to elucidate how the contributions and discharge rates of subsurface water (water in the soil layer) and groundwater (water in fractured bedrock) aggregate and change with catchment area increase, and to elucidate whether the spatial variability of the discharge rate of groundwater determines the spatial variability of stream discharge or groundwater contribution. The study area was a 5‐km2 forested headwater catchment in Japan. We measured stream discharge at 113 points and water chemistry at 159 points under base flow conditions. End‐member mixing analysis was used to separate stream water into subsurface water and groundwater. The contributions of both subsurface water and groundwater had large variability below 1 km2. The contribution of subsurface water decreased markedly, while that of groundwater increased markedly, with increases in catchment area. The specific discharge of subsurface water showed a large degree of variability and decreased with catchment area below 0.1 km2, becoming almost constant above 0.1 km2. The specific discharge of groundwater showed large variability below 1 km2 and increased with catchment area. These results indicated that the variabilities of stream discharge and groundwater contribution corresponded well with the variability of the discharge rate of groundwater. However, below 0.1 km2, it was necessary to consider variations in the discharge rates of both subsurface water and groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
49.
We investigate the performance of the newest generation multi-model ensemble (MME) from the Coupled Model Intercomparison Project (CMIP5). We compare the ensemble to the previous generation models (CMIP3) as well as several single model ensembles (SMEs), which are constructed by varying components of single models. These SMEs range from ensembles where parameter uncertainties are sampled (perturbed physics ensembles) through to an ensemble where a number of the physical schemes are switched (multi-physics ensemble). We focus on assessing reliability against present-day climatology with rank histograms, but also investigate the effective degrees of freedom (EDoF) of the fields of variables which makes the statistical test of reliability more rigorous, and consider the distances between the observation and ensemble members. We find that the features of the CMIP5 rank histograms, of general reliability on broad scales, are consistent with those of CMIP3, suggesting a similar level of performance for present-day climatology. The spread of MMEs tends towards being “over-dispersed” rather than “under-dispersed”. In general, the SMEs examined tend towards insufficient dispersion and the rank histogram analysis identifies them as being statistically distinguishable from many of the observations. The EDoFs of the MMEs are generally greater than those of SMEs, suggesting that structural changes lead to a characteristically richer range of model behaviours than is obtained with parametric/physical-scheme-switching ensembles. For distance measures, the observations and models ensemble members are similarly spaced from each other for MMEs, whereas for the SMEs, the observations are generally well outside the ensemble. We suggest that multi-model ensembles should represent an important component of uncertainty analysis.  相似文献   
50.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号